Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neural Network Compression for Reinforcement Learning Tasks (2405.07748v1)

Published 13 May 2024 in cs.LG

Abstract: In real applications of Reinforcement Learning (RL), such as robotics, low latency and energy efficient inference is very desired. The use of sparsity and pruning for optimizing Neural Network inference, and particularly to improve energy and latency efficiency, is a standard technique. In this work, we perform a systematic investigation of applying these optimization techniques for different RL algorithms in different RL environments, yielding up to a 400-fold reduction in the size of neural networks.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com