Convergence analysis of three semi-discrete numerical schemes for nonlocal geometric flows including perimeter terms (2405.07690v1)
Abstract: We present and analyze three distinct semi-discrete schemes for solving nonlocal geometric flows incorporating perimeter terms. These schemes are based on the finite difference method, the finite element method, and the finite element method with a specific tangential motion. We offer rigorous proofs of quadratic convergence under $H1$-norm for the first scheme and linear convergence under $H1$-norm for the latter two schemes. All error estimates rely on the observation that the error of the nonlocal term can be controlled by the error of the local term. Furthermore, we explore the relationship between the convergence under $L\infty$-norm and manifold distance. Extensive numerical experiments are conducted to verify the convergence analysis, and demonstrate the accuracy of our schemes under various norms for different types of nonlocal flows.
- G. Bai and B. Li. A new approach to the analysis of parametric finite element approximations to mean curvature flow. Found. Comput. Math., doi.org/10.1007/s10208-023-09622-x, 2023.
- Interfaces: modeling, analysis, numerics. Oberwolfach Seminar, Volume 51. Birkhäuser, Springer, 2023.
- A finite element method for surface diffusion: The parametric case. J. Comput. Phys., 203:321–343, 2005.
- A symmetrized parametric finite element method for anisotropic surface diffusion of closed curves. SIAM J. Numer. Anal., 61(2):617–641., 2023.
- W. Bao and Q. Zhao. A structure-preserving parametric finite element method for surface diffusion. SIAM J. Numer. Anal., 59(5):2775–2799., 2021.
- Parametric finite element method approximations of curvature driven interface evolutions. In Andrea Bonito and Ricardo H. Nochetto, editors, Handbook of Numerical Analysis, Volume 21, pages 275–423. Elsevier, 2020.
- L. Bronsard and B. Stoth. Volume-preserving mean curvature flow as a limit of a nonlocal Ginzburg-Landau equation. SIAM J. Math. Anal., 28(4):769–807., 1997.
- Nonlocal curvature flows. Arch. Ration. Mech. Anal., 218:1263–1329., 2015.
- An accurate numerical scheme for the contraction of a bubble in a Hele-Shaw cell. The ANZIAM Journal, 54:C309–C326, 2012.
- Bubble extinction in Hele-Shaw flow with surface tension and kinetic undercooling regularization. Nonlinearity, 26(6):1639–1665., 2013.
- A curve shortening flow rule for closed embedded plane curves with a prescribed rate of change in enclosed area. Proc. R. Soc. A, 472(2185):20150629, 2016.
- K. Deckelnick and G. Dziuk. On the approximation of the curve shortening flow. Pitman Research Notes in Mathematics Series, pages 100–108., 1995.
- Computation of geometric partial differential equations and mean curvature flow. Acta Numer., 14:139–232., 2005.
- K. Deckelnick and R. Nürnberg. Discrete anisotropic curve shortening flow in higher codimension. arXiv:2310.02138, 2023.
- K. Deckelnick and R. Nürnberg. Discrete hyperbolic curvature flow in the plane. SIAM J. Numer. Anal., 61:1835–1857., 2023.
- K. Deckelnick and R. Nürnberg. A novel finite element approximation of anisotropic curve shortening flow. Interfaces Free Bound., 4:671–708, 2023.
- K. Deckelnick and R. Nürnberg. An unconditionally stable finite element scheme for anisotropic curve shortening flow. Arch. Math., 59:263–274., 2023.
- K. Deckelnick and R. Nürnberg. Finite element schemes with tangential motion for fourth order geometric curve evolutions in arbitrary codimension. arXiv:2402.16799, 2024.
- do Carmo M. P. Differential Geometry of Curves and Surfaces. Dover Publications, Inc., Mineola, NY, 2016.
- B. Duan and B. Li. New artificial tangential motions for parametric finite element approximation of surface evolution. SIAM J. Sci. Comput., 46:A587–A608, 2024.
- G. Dziuk. Discrete anisotropic curve shortening flow. SIAM J. Numer. Anal., 36(6):1808–1830., 1999.
- C. M. Elliott and H. Fritz. On approximations of the curve shortening flow and of the mean curvature flow based on the DeTurck trick. IMA J. Numer. Anal., 37(2):543–603., 2017.
- M. Gage. On an area-preserving evolution equation for plane curves. Contemp. Math., 51:51–62., 1986.
- S. F. Vita I. C. Dolcetta and R. March. Area-preserving curve-shortening flows: from phase separation to image processing. Interfaces Free Bound., 4(4):325–343., 2002.
- L. Jiang and S. Pan. On a non-local curve evolution problem in the plane. Comm. Anal. Geom., 16(1):1–26., 2008.
- A convexity-preserving and perimeter-decreasing parametric finite element method for the area-preserving curve shortening flow. SIAM J. Numer. Anal., 61(4):1989–2010., 2023.
- A second-order in time, BGN-based parametric finite element method for geometric flows of curves. arXiv:2309.12875., 2023.
- Stable BDF time discretization of BGN-based parametric finite element methods for geometric flows. arXiv:2402.03641, 2024.
- U. F. Mayer. A numerical scheme for moving boundary problems that are gradient flows for the area functional. European J. Appl. Math., 11(1):61–80., 2000.
- K. Mikula and D. Ševčovič. Computational and qualitative aspects of evolution of curves driven by curvature and external force. Comput. Vis. Sci., 6(4):211–225., 2004.
- K. Mikula and D. Ševčovič. A direct method for solving an anisotropic mean curvature flow of plane curves with an external force. Math. Methods Appl. Sci., 27(13):1545–1565., 2004.
- L. Pei and Y. Li. A structure-preserving parametric finite element method for area-conserved generalized mean curvature flow. J. Sci. Comput., 96(6):1–21, 2023.
- P. Pozzi and B. Stinner. Convergence of a scheme for elastic flow with tangential mesh movement. ESAIM Math. Model. Numer. Anal., 57(2):445–466, 2023.
- S. J. Ruuth and B. Wetton. A simple scheme for volume-preserving motion by mean curvature. J. Sci. Comput., 19:373–384., 2003.
- G. Sapiro. Geometric Partial Differential Equations and Image Analysis. Cambridge University Press, 2001.
- G. Sapiro and A. Tannenbaum. Area and length preserving geometric invariant scale-spaces. IEEE Trans. Pattern Anal. Mach. Intell., 17:67–72, 1995.
- D. Ševčovič and K. Mikula. Evolution of plane curves driven by a nonlinear function of curvature and anisotropy. SIAM J. Appl. Math., 61(5):1473–1501., 2001.
- D. Tsai and X. Wang. On length-preserving and area-preserving nonlocal flow of convex closed plane curves. Calc. Var. Partial Differential Equations, 54:3603–3622., 2015.
- D. Tsai and X. Wang. The evolution of nonlocal curvature flow arising in a Hele-Shaw problem. SIAM J. Math. Anal., 50(1):1396–1431., 2018.
- T. Ushijima and S. Yazaki. Convergence of a crystalline approximation for an area-preserving motion. J. Comput. Appl. Math., 166(2):427–452., 2004.
- X. Wang and L. Kong. Area-preserving evolution of nonsimple symmetric plane curves. J. Evol. Equ., 14(2):387–401., 2014.
- An energy-stable parametric finite element method for simulating solid-state dewetting. IMA J. Numer. Anal., 41(3):2026–2055., 2021.