Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bayesian Spatially Clustered Compositional Regression: Linking intersectoral GDP contributions to Gini Coefficients (2405.07408v1)

Published 13 May 2024 in stat.ME and stat.AP

Abstract: The Gini coefficient is an universally used measurement of income inequality. Intersectoral GDP contributions reveal the economic development of different sectors of the national economy. Linking intersectoral GDP contributions to Gini coefficients will provide better understandings of how the Gini coefficient is influenced by different industries. In this paper, a compositional regression with spatially clustered coefficients is proposed to explore heterogeneous effects over spatial locations under nonparametric Bayesian framework. Specifically, a Markov random field constraint mixture of finite mixtures prior is designed for Bayesian log contrast regression with compostional covariates, which allows for both spatially contiguous clusters and discontinous clusters. In addition, an efficient Markov chain Monte Carlo algorithm for posterior sampling that enables simultaneous inference on both cluster configurations and cluster-wise parameters is designed. The compelling empirical performance of the proposed method is demonstrated via extensive simulation studies and an application to 51 states of United States from 2019 Bureau of Economic Analysis.

Summary

We haven't generated a summary for this paper yet.