Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Zero Shot Context-Based Object Segmentation using SLIP (SAM+CLIP) (2405.07284v1)

Published 12 May 2024 in cs.CV and cs.AI

Abstract: We present SLIP (SAM+CLIP), an enhanced architecture for zero-shot object segmentation. SLIP combines the Segment Anything Model (SAM) \cite{kirillov2023segment} with the Contrastive Language-Image Pretraining (CLIP) \cite{radford2021learning}. By incorporating text prompts into SAM using CLIP, SLIP enables object segmentation without prior training on specific classes or categories. We fine-tune CLIP on a Pokemon dataset, allowing it to learn meaningful image-text representations. SLIP demonstrates the ability to recognize and segment objects in images based on contextual information from text prompts, expanding the capabilities of SAM for versatile object segmentation. Our experiments demonstrate the effectiveness of the SLIP architecture in segmenting objects in images based on textual cues. The integration of CLIP's text-image understanding capabilities into SAM expands the capabilities of the original architecture and enables more versatile and context-aware object segmentation.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets