Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Chained Flexible Capsule Endoscope: Unraveling the Conundrum of Size Limitations and Functional Integration for Gastrointestinal Transitivity (2405.07218v1)

Published 12 May 2024 in physics.med-ph, cs.SY, and eess.SY

Abstract: Capsule endoscopes, predominantly serving diagnostic functions, provide lucid internal imagery but are devoid of surgical or therapeutic capabilities. Consequently, despite lesion detection, physicians frequently resort to traditional endoscopic or open surgical procedures for treatment, resulting in more complex, potentially risky interventions. To surmount these limitations, this study introduces a chained flexible capsule endoscope (FCE) design concept, specifically conceived to navigate the inherent volume constraints of capsule endoscopes whilst augmenting their therapeutic functionalities. The FCE's distinctive flexibility originates from a conventional rotating joint design and the incision pattern in the flexible material. In vitro experiments validated the passive navigation ability of the FCE in rugged intestinal tracts. Further, the FCE demonstrates consistent reptile-like peristalsis under the influence of an external magnetic field, and possesses the capability for film expansion and disintegration under high-frequency electromagnetic stimulation. These findings illuminate a promising path toward amplifying the therapeutic capacities of capsule endoscopes without necessitating a size compromise.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (25)
  1. G. Iddan, G. Meron, A. Glukhovsky, and P. Swain, “Wireless capsule endoscopy,” Nature, vol. 405, no. 6785, pp. 417–417, 2000.
  2. A. Wang, S. Banerjee, B. A. Barth, Y. M. Bhat, S. Chauhan, K. T. Gottlieb, V. Konda, J. T. Maple, F. Murad, P. R. Pfau, et al., “Wireless capsule endoscopy,” Gastrointestinal endoscopy, vol. 78, no. 6, pp. 805–815, 2013.
  3. A. Koulaouzidis and G. Baatrup, “Current status of colon capsule endoscopy in clinical practice,” Nature Reviews Gastroenterology & Hepatology, pp. 1–2, 2023.
  4. W. Chen, J. Sui, and C. Wang, “Magnetically actuated capsule robots: A review,” IEEE Access, 2022.
  5. H. Zhou, G. Alici, and F. Munoz, “A magnetically actuated anchoring system for a wireless endoscopic capsule,” Biomedical microdevices, vol. 18, pp. 1–9, 2016.
  6. S. Song, S. Yuan, F. Zhang, J. Su, D. Ye, J. Wang, and M. Q.-H. Meng, “Integrated design and decoupled control of anchoring and drug release for wireless capsule robots,” IEEE/ASME Transactions on Mechatronics, vol. 27, no. 5, pp. 2897–2907, 2021.
  7. T. Wang, W. Hu, Z. Ren, and M. Sitti, “Ultrasound-guided wireless tubular robotic anchoring system,” IEEE robotics and automation letters, vol. 5, no. 3, pp. 4859–4866, 2020.
  8. M. C. Hoang, V. H. Le, K. T. Nguyen, V. D. Nguyen, J. Kim, E. Choi, S. Bang, B. Kang, J.-O. Park, and C.-S. Kim, “A robotic biopsy endoscope with magnetic 5-dof locomotion and a retractable biopsy punch,” Micromachines, vol. 11, no. 1, p. 98, 2020.
  9. D. Ye, J. Xue, S. Yuan, F. Zhang, S. Song, J. Wang, and M. Q.-H. Meng, “Design and control of a magnetically-actuated capsule robot with biopsy function,” IEEE Transactions on Biomedical Engineering, vol. 69, no. 9, pp. 2905–2915, 2022.
  10. G. Gerboni, A. Menciassi, and P. Valdastri, “Magnetic torsion spring mechanism for a wireless biopsy capsule,”
  11. Z. Nagy, R. Oung, J. J. Abbott, and B. J. Nelson, “Experimental investigation of magnetic self-assembly for swallowable modular robots,” in 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1915–1920, IEEE, 2008.
  12. J. Guo, P. Liu, S. Guo, L. Wang, and G. Sun, “Development of a novel wireless spiral capsule robot with modular structure,” in 2017 IEEE International Conference on Mechatronics and Automation (ICMA), pp. 439–444, IEEE, 2017.
  13. S. Guo, P. Zhang, J. Guo, Q. Fu, L. Wang, and G. Sun, “Design and performance evaluation of the novel multi-modular capsule robot,” in 2018 IEEE International Conference on Mechatronics and Automation (ICMA), pp. 1552–1557, IEEE, 2018.
  14. X. Wang, M.-H. Meng, and Y. Chan, “Physiological factors of the small intestine in design of active capsule endoscopy,” in 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, pp. 2942–2945, IEEE, 2006.
  15. J. Legrand, M. Ourak, T. Vandebroek, and E. Vander Poorten, “A large displacement model for superelastic material side-notched tube instruments,” International Journal of Mechanical Sciences, vol. 197, p. 106329, 2021.
  16. Y. Sun, Y. Liu, F. Pancheri, and T. C. Lueth, “Larg: A lightweight robotic gripper with 3-d topology optimized adaptive fingers,” IEEE/ASME Transactions on Mechatronics, vol. 27, no. 4, pp. 2026–2034, 2022.
  17. M. Kusaka, M. Sugimoto, N. Fukami, H. Sasaki, M. Takenaka, T. Anraku, T. Ito, T. Kenmochi, R. Shiroki, and K. Hoshinaga, “Initial experience with a tailor-made simulation and navigation program using a 3-d printer model of kidney transplantation surgery,” in Transplantation Proceedings, vol. 47, pp. 596–599, Elsevier, 2015.
  18. W. Zeng, J. Yan, K. Yan, X. Huang, X. Wang, and S. S. Cheng, “Modeling a symmetrically-notched continuum neurosurgical robot with non-constant curvature and superelastic property,” IEEE Robotics and Automation Letters, vol. 6, no. 4, pp. 6489–6496, 2021.
  19. Y. Yang, S. Yuan, and H. Ren, “Reversible elastomer–fluid transitions for metamorphosic robots,” Advanced Functional Materials, 2024.
  20. S. Yuan, S. Cao, J. Xue, S. Su, J. Yan, M. Wang, W. Yue, S. S. Cheng, J. Liu, J. Wang, et al., “Versatile motion generation of magnetic origami spring robots in the uniform magnetic field,” IEEE Robotics and Automation Letters, vol. 7, no. 4, pp. 10486–10493, 2022.
  21. C. J. Cai, B. S. Yeow, H. Huang, C. Laschi, and H. Ren, “Magnetically actuated lamina emergent mechanism for bimodal crawling and flipping locomotion,” IEEE/ASME Transactions on Mechatronics, 2023.
  22. B. S. Yeow, H. Yang, M. Sivaperuman Kalairaj, H. Gao, C. J. Cai, S. Xu, P.-Y. Chen, and H. Ren, “Magnetically steerable serial and parallel structures by mold-free origami templating and domain setting,” Advanced Materials Technologies, vol. 7, no. 6, p. 2101140, 2022.
  23. S. Song, S. Wang, S. Yuan, J. Wang, W. Liu, and M. Q.-H. Meng, “Magnetic tracking of wireless capsule endoscope in mobile setup based on differential signals,” IEEE Transactions on Instrumentation and Measurement, vol. 70, pp. 1–8, 2021.
  24. S. Su, S. Yuan, M. Xu, H. Gao, X. Yang, and H. Ren, “Amagposenet: Real-time 6-dof magnet pose estimation by dual-domain few-shot learning from prior model,” IEEE Transactions on Industrial Informatics, 2023.
  25. S. Su, H. Dai, Y. Zhang, S. Yuan, S. Song, and H. Ren, “Magnetic tracking with real-time geomagnetic vector separation for robotic dockable charging,” IEEE Transactions on Intelligent Transportation Systems, 2023.

Summary

We haven't generated a summary for this paper yet.