Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deciding regular games: a playground for exponential time algorithms (2405.07188v1)

Published 12 May 2024 in cs.GT

Abstract: Regular games form a well-established class of games for analysis and synthesis of reactive systems. They include coloured Muller games, McNaughton games, Muller games, Rabin games, and Streett games. These games are played on directed graphs $\mathcal G$ where Player 0 and Player 1 play by generating an infinite path $\rho$ through the graph. The winner is determined by specifications put on the set $X$ of vertices in $\rho$ that occur infinitely often. These games are determined, enabling the partitioning of $\mathcal G$ into two sets $W_0$ and $W_1$ of winning positions for Player 0 and Player 1, respectively. Numerous algorithms exist that decide specific instances of regular games, e.g., Muller games, by computing $W_0$ and $W_1$. In this paper we aim to find general principles for designing uniform algorithms that decide all regular games. For this we utilise various recursive and dynamic programming algorithms that leverage standard notions such as subgames and traps. Importantly, we show that our techniques improve or match the performances of existing algorithms for many instances of regular games.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (2)

Summary

We haven't generated a summary for this paper yet.