Repairing Reed-Solomon Codes with Side Information (2405.07180v1)
Abstract: We generalize the problem of recovering a lost/erased symbol in a Reed-Solomon code to the scenario in which some side information about the lost symbol is known. The side information is represented as a set $S$ of linearly independent combinations of the sub-symbols of the lost symbol. When $S = \varnothing$, this reduces to the standard problem of repairing a single codeword symbol. When $S$ is a set of sub-symbols of the erased one, this becomes the repair problem with partially lost/erased symbol. We first establish that the minimum repair bandwidth depends on $|S|$ and not the content of $S$ and construct a lower bound on the repair bandwidth of a linear repair scheme with side information $S$. We then consider the well-known subspace-polynomial repair schemes and show that their repair bandwidths can be optimized by choosing the right subspaces. Finally, we demonstrate several parameter regimes where the optimal bandwidths can be achieved for full-length Reed-Solomon codes.
- K. V. Rashmi, N. B. Shah, D. Gu, H. Kuang, D. Borthakur, and K. Ramchandran, “A solution to the network challenges of data recovery in erasure-coded distributed storage systems: A study on the Facebook warehouse cluster,” in Proc. USENIX Conf. Hot Topics Storage File Syst. (HotStorage), 2013, pp. 8–8.
- A. Dimakis, P. Godfrey, Y. Wu, M. Wainwright, and K. Ramchandran, “Network coding for distributed storage systems,” IEEE Trans. Inform. Theory, vol. 56, no. 9, pp. 4539–4551, 2010.
- A. Dimakis, K. Ramchandran, Y. Wu, and C. Suh, “A survey on network codes for distributed storage,” Proc. IEEE, vol. 99, no. 3, pp. 476–489, 2011.
- O. Khan, R. Burns, J. Plank, W. Pierce, and C. Huang, “Rethinking erasure codes for cloud file systems: Minimizing i/o for recovery and degraded reads,” in Proc. 13th USENIX Conf. File Storage Technol. (FAST), 2012.
- S. B. Balaji, M. N. Krishnan, M. Vajha, V. Ramkumar, B. Sasidharan, and P. V. Kumar, “Erasure coding for distributed storage: an overview,” Science China Information Sciences, vol. 61, no. 10, 2018.
- A. Wyner, “On source coding with side information at the decoder,” IEEE Trans. Inform. Theory, vol. 21, no. 3, pp. 294–300, 1975.
- V. Guruswami, “List decoding with side information,” in Proc. IEEE Annual Conference on Computational Complexity, 2003, pp. 300–309.
- Y. Birk and T. Kol, “Coding on demand by an informed source (ISCOD) for efficient broadcast of different supplemental data to caching clients,” IEEE Trans. Inform. Theory, vol. 52, no. 6, pp. 2825–2830, 2006.
- Z. Bar-Yossef, Y. Birk, T. S. Jayram, and T. Kol, “Index coding with side information,” IEEE Trans. Inform. Theory, vol. 57, no. 3, pp. 1479–1494, 2011.
- S. Kadhe, B. Garcia, A. Heidarzadeh, S. E. Rouayheb, and A. Sprintson, “Private information retrieval with side information,” IEEE Trans. Inform. Theory, vol. 66, no. 4, pp. 2032–2043, 2020.
- T. X. Dinh, L. Y. Nhi Nguyen, L. J. Mohan, S. Boztas, T. T. Luong, and S. H. Dau, “Practical considerations in repairing Reed-Solomon codes,” in Proc. IEEE Int. Symp. Inform. Theory (ISIT), 2022, pp. 2607–2612.
- K. Shanmugam, D. S. Papailiopoulos, A. G. Dimakis, and G. Caire, “A repair framework for scalar MDS codes,” IEEE J. Selected Areas Comm. (JSAC), vol. 32, no. 5, pp. 998–1007, 2014.
- V. Guruswami and M. Wootters, “Repairing Reed-Solomon codes,” in Proc. Annu. Symp. Theory Comput. (STOC), 2016.
- ——, “Repairing Reed-Solomon codes,” IEEE Trans. Inform. Theory, vol. 63, no. 9, pp. 5684–5698, 2017.
- S. H. Dau and O. Milenkovic, “Optimal repair schemes for some families of Reed-Solomon codes,” in Proc. IEEE Int. Symp. Inform. Theory (ISIT), 2017, pp. 346–350.
- S. H. Dau, I. Duursma, H. M. Kiah, and O. Milenkovic, “Repairing Reed-Solomon codes with two erasures,” in Proc. IEEE Int. Symp. Inform. Theory (ISIT), 2017, pp. 351–355.
- ——, “Repairing Reed-Solomon codes with multiple erasures,” IEEE Trans. Inform. Theory, vol. 54, no. 10, pp. 6567–6582, 2018.
- M. Ye and A. Barg, “Explicit constructions of high-rate MDS array codes with optimal repair bandwidth,” IEEE Trans. Inform. Theory, vol. 63, no. 4, pp. 2001–2014, 2017.
- W. Li, Z. Wang, and H. Jafarkhani, “A tradeoff between the sub-packetization size and the repair bandwidth for Reed-Solomon code,” in Proc. 55th Annual Allerton Conf. Comm. Control Comput. (Allerton), 2017, pp. 942–949.
- ——, “On the sub-packetization size and the repair bandwidth of Reed-Solomon codes,” IEEE Trans. Inform. Theory, vol. 65, no. 9, pp. 5484–5502, 2019.
- ——, “Repairing Reed-Solomon Codes Over GF(2ℓ)𝐺𝐹superscript2ℓGF(2^{\ell})italic_G italic_F ( 2 start_POSTSUPERSCRIPT roman_ℓ end_POSTSUPERSCRIPT ),” IEEE Comm. Lett., vol. 24, no. 1, pp. 34–37, 2020.
- A. Chowdhury and A. Vardy, “Improved schemes for asymptotically optimal repair of MDS codes,” in Proc. 55th Annual Allerton Conf. Comm Control Comput. (Allerton), 2017.
- ——, “Improved schemes for asymptotically optimal repair of MDS codes,” IEEE Trans. Inform. Theory, vol. 67, no. 8, pp. 5051–5068, 2021.
- I. Tamo, M. Ye, and A. Barg, “Optimal repair of Reed-Solomon codes: Achieving the cut-set bound,” in Proc. 58th Annual IEEE Symp. Foundations Computer Sci. (FOCS), 2017.
- ——, “The repair problem for Reed-Solomon codes: Optimal repair of single and multiple erasures with almost optimal node size,” IEEE Trans. Inform. Theory, vol. 65, no. 5, pp. 2673–2695, 2018.
- S. H. Dau and E. Viterbo, “Repair schemes with optimal I/O costs for full-length Reed-Solomon codes with two parities,” in Proc. IEEE Inform. Theory Workshop (ITW), 2018, pp. 590–594.
- S. H. Dau, I. Duursma, and H. Chu, “On the I/O costs of some repair schemes for full-length Reed-Solomon codes,” in Proc. IEEE Int. Symp. Inform. Theory (ISIT), 2018, pp. 1700–1704.
- I. Duursma and S. H. Dau, “Low bandwidth repair of the RS(10,4) Reed-Solomon code,” in Proc. Inform. Theory Applicat. Workshop (ITA), 2017.
- S. H. Dau, T. X. Dinh, H. M. Kiah, T. T. Luong, and O. Milenkovic, “Repairing Reed-Solomon codes via subspace polynomials,” IEEE Trans. Inform. Theory, vol. 67, no. 10, pp. 6395–6407, 2021.
- W. Li, H. Dau, Z. Wang, H. Jafarkhani, and E. Viterbo, “On the I/O costs in repairing short-length Reed-Solomon codes,” in Proc. IEEE Int. Symp. Inform. Theory (ISIT), 2019, pp. 1087–1091.
- T. X. Dinh, S. Boztas, S. H. Dau, and E. Viterbo, “Designing compact repair groups for Reed-Solomon codes,” in Proc. IEEE Int. Symp. Inform. Theory (ISIT), 2023, pp. 2027–2032.
- J. Xu, Y. Zhang, K. Wang, and Z. Zhang, “Cooperative repair of Reed-Solomon codes via linearized permutation polynomials,” IEEE Trans. Inform. Theory, pp. 1–11, 2023.
- A. Berman, S. Buzaglo, A. Dor, Y. Shany, and I. Tamo, “Repairing Reed–Solomon codes evaluated on subspaces,” in Proc. IEEE Int. Symp. Inform. Theory (ISIT), 2021, pp. 867–871.
- R. Con and I. Tamo, “Nonlinear repair of Reed-Solomon codes,” IEEE Trans. Inform. Theory, vol. 68, no. 8, pp. 5165–5177, 2022.
- R. Con, N. Shutty, I. Tamo, and M. Wootters, “Repairing Reed-Solomon codes over prime fields via exponential sums,” in Proc. IEEE Int. Symp. Inform. Theory (ISIT), 2023, pp. 1330–1335.