Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Asymptotic profiles for Choquard equations with general critical nonlinearities (2405.07149v1)

Published 12 May 2024 in math.AP

Abstract: In this paper, we study asymptotic behavior of positive ground state solutions for the nonlinear Choquard equation: \begin{equation}\label{0.1} -\Delta u+\varepsilon u=\big(I_{\alpha}\ast F(u)\big)F'(u),\quad u\in H1(\mathbb RN), \end{equation} where $F(u)=|u|{\frac{N+\alpha}{N-2}}+G(u)$, $N\geq3$ is an integer, $I_{\alpha}$ is the Riesz potential of order $\alpha\in(0,N)$, and $\varepsilon>0$ is a parameter. Under some mild subcritical growth assumptions on $G(u)$, we show that as $\varepsilon \to \infty$, the ground state solutions of \eqref{0.1}, after a suitable rescaling, converge to a particular solution of the critical Choquard equation $-\Delta u=\frac{N+\alpha}{N-2}(I_{\alpha}*|u|{\frac{N+\alpha}{N-2}})|u|{\frac{N+\alpha}{N-2}-2}u$. We establish a novel sharp asymptotic characterisation of such a rescaling, which depends in a non-trivial way on the asymptotic behavior of $G(u)$ at infinity and the space dimension $N=3$, $N=4$ or $N\geq5$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. T. Aubin, Best constants in the Sobolev imbedding theorem: the Yamabe problem, Ann. of Math. Stud., 115 (1989), 173-184.
  2. Uniqueness and nondegeneracy of ground states to nonlinear scalar field equations involving the Sobolev critical exponent in their nonlinearities for high frequencies, Calc. Var. Partial Differential Equations, 58 (2019), Paper No. 120, 32pp.
  3. Global dynamics above the ground state energy for the combined power type nonlinear Schro¨¨𝑜\ddot{o}over¨ start_ARG italic_o end_ARGdinger equations with energy critical growth at the low frequencies, Memoirs of the AMS, 272 (2021), 1331.
  4. H. Berestycki, P. L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Archive for Rational Mechanics and Analysis, 82 (1983), 313-345.
  5. H. Brezis, L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Commun. Pure Appl. Math., 36 (1983), 437-477.
  6. D. Gilbarg, N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Grundlehren der Mathematischen Wissenschaften, Second edu. Springer, Berlin (1983).
  7. F. S. Gao, M. B. Yang, The Brezis-Nirenberg type critical problem for nonlinear Choquard equation, Sci. China Math., 61(7) (2018), 1219-1242.
  8. F. S. Gao, M. B. Yang, On nonlocal Choquard equations with Hardy-Littlewood-Sobolev critical exponents, Journal of Mathematical Analysis and Applications, 448(2) (2017), 1006-1041.
  9. L. Jeanjean, K. Tanaka, A remark on least energy solutions in ℝNsuperscriptℝ𝑁\mathbb{R}^{N}blackboard_R start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT, Proc. Amer. Math. Soc.,131 (2002), 2399-2408.
  10. X. Li, S. Ma, Choquard equations with critical nonlinearities, Commun. Contemp. Math., 22 (2019), 1950023.
  11. Existence and qualitative properties of solutions for Choquard equations with a local term, Nonlinear Analysis: Real World Applications, 45 (2019), 1-25.
  12. E. H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math.,(2)118 (1983), no.2,349-374.
  13. E. H. Lieb, M. Loss, Analysis, volume 14 of graduate studies in mathematics, American Mathematical Society, Providence, RI,4 (2001).
  14. Quasilinear elliptic equations with critical growth via perturbation method, J. Differ. Equ, 254 (2013), 102-124.
  15. Z. Liu, V. Moroz, Limit profiles for singularly perturbed Choquard equations with local repulsion, Calc. Var. Partial Differential Equations, 61 (2022), no. 4, Paper No. 160, 59pp.
  16. P. L. Lions, The concentration-compactness principle in the calculus of variations: The locally compact cases, Part I and Part II, Ann. Inst. H. Poincare´´𝑒\acute{e}over´ start_ARG italic_e end_ARG Anal. Non Line´´𝑒\acute{e}over´ start_ARG italic_e end_ARGaire,1 (1984), 223-283.
  17. S. Ma, V. Moroz, Asymptotic profiles for a nonlinear Schro¨¨𝑜\ddot{o}over¨ start_ARG italic_o end_ARGdinger equation with critical combined powers nonlinearity, Math. Z., 304 (2023), no. 1, Paper No.
  18. S. Ma, V. Moroz, Asymptotic profiles for Choquard equatiuons with combined attractive nonlinearities, arXiv:2302.13727v1.
  19. S. Ma, V. Moroz, Asymptotic profiles of ground state solutions for Choquard equatiuons with a general local perturbation, arXiv:2405.02877v1 [math.AP] 5 May 2024.
  20. S. Ma, Non-existence and multiplicity of positive solutions for Choquard equations with critical combined nonlinearities, arXiv:2404.01093v1 [math.AP] 1 Apr 2024.
  21. V. Moroz, C. B. Muraratov, Asymptotic properties of ground states of scalar field equations with a vanishing parameter, J. Eur. Math. Soc., 16 (2014), 1081-1109.
  22. V. Moroz, J. Van Schaftingen, Existence of groundstates for a class of nonlinear Choquard equations, Trans. Amer. Math. Soc., 367 (2015), 6557-6579.
  23. D. Siegel, E. Talvila, Pointwise growth estimates of the Riesz potential, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal.,5 (1999), 185194. pages 1.
  24. G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura. Appl,110 (1976), 353-372.
  25. The nonlinear Schro¨¨𝑜\ddot{o}over¨ start_ARG italic_o end_ARGdinger equation with combined power-type nonlinearities, Commun. Partial Differ. Equ., 32 (2007), 1281-1343.
  26. M. Willem, Minimax Theorems, Birkhäuser, Boston, (1996).

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com