Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cross-Domain Continual Learning via CLAMP (2405.07142v1)

Published 12 May 2024 in cs.LG and cs.AI

Abstract: Artificial neural networks, celebrated for their human-like cognitive learning abilities, often encounter the well-known catastrophic forgetting (CF) problem, where the neural networks lose the proficiency in previously acquired knowledge. Despite numerous efforts to mitigate CF, it remains the significant challenge particularly in complex changing environments. This challenge is even more pronounced in cross-domain adaptation following the continual learning (CL) setting, which is a more challenging and realistic scenario that is under-explored. To this end, this article proposes a cross-domain CL approach making possible to deploy a single model in such environments without additional labelling costs. Our approach, namely continual learning approach for many processes (CLAMP), integrates a class-aware adversarial domain adaptation strategy to align a source domain and a target domain. An assessor-guided learning process is put forward to navigate the learning process of a base model assigning a set of weights to every sample controlling the influence of every sample and the interactions of each loss function in such a way to balance the stability and plasticity dilemma thus preventing the CF problem. The first assessor focuses on the negative transfer problem rejecting irrelevant samples of the source domain while the second assessor prevents noisy pseudo labels of the target domain. Both assessors are trained in the meta-learning approach using random transformation techniques and similar samples of the source domain. Theoretical analysis and extensive numerical validations demonstrate that CLAMP significantly outperforms established baseline algorithms across all experiments by at least $10\%$ margin.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (35)
  1. doi:https://doi.org/10.1016/j.knosys.2021.106947. URL https://api.semanticscholar.org/CorpusID:233710658
  2. doi:https://doi.org/10.48550/arXiv.2006.07326. URL https://api.semanticscholar.org/CorpusID:219636462
  3. doi:https://doi.org/10.48550/arXiv.1606.04671. URL https://api.semanticscholar.org/CorpusID:15350923
  4. doi:https://doi.org/10.48550/arXiv.2106.14563. URL https://api.semanticscholar.org/CorpusID:235658071
  5. doi:https://doi.org/10.48550/arXiv.1708.01547. URL https://api.semanticscholar.org/CorpusID:3693512
  6. doi:https://doi.org/10.48550/arXiv.1705.08690. URL https://api.semanticscholar.org/CorpusID:1888776
  7. doi:10.5555/2969033.2969125. URL https://api.semanticscholar.org/CorpusID:261560300
  8. doi:https://doi.org/10.1145/2983323.2983842. URL https://api.semanticscholar.org/CorpusID:16830931
  9. doi:https://doi.org/10.48550/arXiv.2207.10856. URL https://api.semanticscholar.org/CorpusID:251018211
  10. doi:https://doi.org/10.48550/arXiv.1505.07818. URL https://api.semanticscholar.org/CorpusID:2871880
  11. doi:https://doi.org/10.48550/arXiv.2402.12490. URL https://api.semanticscholar.org/CorpusID:267759608
  12. doi:https://doi.org/10.48550/arXiv.2303.11624. URL https://api.semanticscholar.org/CorpusID:257636622
  13. doi:https://doi.org/10.48550/arXiv.1711.09601. URL https://api.semanticscholar.org/CorpusID:21718339
  14. doi:https://doi.org/10.48550/arXiv.1907.13322. URL https://api.semanticscholar.org/CorpusID:199001153
  15. doi:https://doi.org/10.48550/arXiv.1904.00310. URL https://api.semanticscholar.org/CorpusID:90259576
  16. doi:https://doi.org/10.48550/arXiv.2209.01556. URL https://api.semanticscholar.org/CorpusID:252089650
  17. doi:https://doi.org/10.48550/arXiv.1902.10486. URL https://api.semanticscholar.org/CorpusID:173188188
  18. doi:https://doi.org/10.48550/arXiv.1812.00420. URL https://api.semanticscholar.org/CorpusID:54443381
  19. doi:https://doi.org/10.48550/arXiv.2002.08165. URL https://api.semanticscholar.org/CorpusID:210957697
  20. doi:https://doi.org/10.48550/arXiv.2209.02112. URL https://api.semanticscholar.org/CorpusID:252090326
  21. doi:https://doi.org/10.48550/arXiv.2209.01558. URL https://api.semanticscholar.org/CorpusID:252089827
  22. doi:https://doi.org/10.48550/arXiv.1703.03400. URL https://api.semanticscholar.org/CorpusID:6719686
  23. doi:https://doi.org/10.48550/arXiv.1905.12588. URL https://api.semanticscholar.org/CorpusID:168169908
  24. doi:https://doi.org/10.1145/3132847.3132886. URL https://api.semanticscholar.org/CorpusID:25322234
  25. doi:https://doi.org/10.1609/aaai.v33i01.33013478. URL https://api.semanticscholar.org/CorpusID:57888755
  26. doi:https://doi.org/10.48550/arXiv.1910.03434. URL https://api.semanticscholar.org/CorpusID:203902308
  27. doi:https://doi.org/10.48550/arXiv.2109.01996. URL https://api.semanticscholar.org/CorpusID:237420507
  28. doi:https://doi.org/10.48550/arXiv.1904.07734. URL https://api.semanticscholar.org/CorpusID:119309522
  29. doi:https://doi.org/10.48550/arXiv.2004.07211. URL https://api.semanticscholar.org/CorpusID:215768806
  30. doi:https://doi.org/10.7551/mitpress/7503.003.0022. URL https://api.semanticscholar.org/CorpusID:10908021
  31. doi:https://doi.org/10.1007/978-3-642-15561-1_16. URL https://api.semanticscholar.org/CorpusID:7534823
  32. doi:https://doi.org/10.48550/arXiv.1710.06924. URL https://api.semanticscholar.org/CorpusID:28698351
  33. doi:https://doi.org/10.48550/arXiv.1801.10112. URL https://api.semanticscholar.org/CorpusID:4047127
  34. doi:https://doi.org/10.48550/arXiv.1807.09536. URL https://api.semanticscholar.org/CorpusID:50785377
  35. doi:https://doi.org/10.1109/34.291440. URL https://api.semanticscholar.org/CorpusID:8148915
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Weiwei Weng (3 papers)
  2. Mahardhika Pratama (59 papers)
  3. Jie Zhang (847 papers)
  4. Chen Chen (753 papers)
  5. Edward Yapp Kien Yee (4 papers)
  6. Ramasamy Savitha (5 papers)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com