Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Incorporating Degradation Estimation in Light Field Spatial Super-Resolution (2405.07012v1)

Published 11 May 2024 in cs.CV

Abstract: Recent advancements in light field super-resolution (SR) have yielded impressive results. In practice, however, many existing methods are limited by assuming fixed degradation models, such as bicubic downsampling, which hinders their robustness in real-world scenarios with complex degradations. To address this limitation, we present LF-DEST, an effective blind Light Field SR method that incorporates explicit Degradation Estimation to handle various degradation types. LF-DEST consists of two primary components: degradation estimation and light field restoration. The former concurrently estimates blur kernels and noise maps from low-resolution degraded light fields, while the latter generates super-resolved light fields based on the estimated degradations. Notably, we introduce a modulated and selective fusion module that intelligently combines degradation representations with image information, allowing for effective handling of diverse degradation types. We conduct extensive experiments on benchmark datasets, demonstrating that LF-DEST achieves superior performance across a variety of degradation scenarios in light field SR.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com