Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ResSurv: Cancer Survival Analysis Prediction Model Based on Residual Networks (2405.06992v1)

Published 11 May 2024 in cs.LG and stat.AP

Abstract: Survival prediction is an important branch of cancer prognosis analysis. The model that predicts survival risk through TCGA genomics data can discover genes related to cancer and provide diagnosis and treatment recommendations based on patient characteristics. We found that deep learning models based on Cox proportional hazards often suffer from overfitting when dealing with high-throughput data. Moreover, we found that as the number of network layers increases, the experimental results will not get better, and network degradation will occur. Based on this problem, we propose a new framework based on Deep Residual Learning. Combine the ideas of Cox proportional hazards and Residual. And name it ResSurv. First, ResSurv is a feed-forward deep learning network stacked by multiple basic ResNet Blocks. In each ResNet Block, we add a Normalization Layer to prevent gradient disappearance and gradient explosion. Secondly, for the loss function of the neural network, we inherited the Cox proportional hazards methods, applied the semi-parametric of the CPH model to the neural network, combined with the partial likelihood model, established the loss function, and performed backpropagation and gradient update. Finally, we compared ResSurv networks of different depths and found that we can effectively extract high-dimensional features. Ablation experiments and comparative experiments prove that our model has reached SOTA(state of the art) in the field of deep learning, and our network can effectively extract deep information.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com