Exploring Topological Transport in Pt$_2$HgSe$_3$ Nanoribbons: Insights for Spintronic Device Integration (2405.06861v1)
Abstract: The discovery of the quantum spin Hall effect led to the exploration of the electronic transport for spintronic devices. Here, we theoretically investigated the electronic conductance in large-gap realistic quantum spin Hall system, Pt$_2$HgSe$_3$ nanoribbons. By an ab initio approach, we found that the edge states present a penetration depth of about $0.9$\,{nm}, which is much smaller than those predicted in other 2D topological systems. Thus, suggesting that Pt$_2$HgSe$_3$ allows the exploitation of topological transport properties in narrow ribbons. Using non-equilibrium Green's functions calculations, we have examined the electron conductivity upon the presence of Se\,$\leftrightarrow$\,Hg antistructure defects randomly distributed in the Pt$_2$HgSe$_3$ scattering region. By considering scattering lengths up to $109$\,nm, we found localization lengths that can surpass $\mu$m sizes for narrow nanoribbons ($<9$\,nm). These findings can contribute to further understanding the behavior of topological insulators under realistic conditions and their integration within electronic, spintronic devices.
- M. Z. Hasan and C. L. Kane, Colloquium: Topological Insulators, Rev. Mod. Phys. 82, 3045 (2010).
- K. L. Wang, M. Lang, and X. Kou, Spintronics of Topological Insulators, in Handbook of Spintronics (Springer Netherlands, 2016) p. 431–462.
- R. L. H. Freire, F. C. de Lima, and A. Fazzio, Substrate Suppression of Oxidation Process in Pnictogen Monolayers, Physical Chemistry Chemical Physics 26, 9149–9154 (2024).
- F. C. de Lima, R. H. Miwa, and A. Fazzio, Jacutingaite-Family: A Class of Topological Materials, Phys. Rev. B 102, 235153 (2020).
- C. L. Kane and E. J. Mele, Quantum Spin Hall Effect in Graphene, Phys. Rev. Lett. 95, 226801 (2005).
- G. Kresse and J. Hafner, Ab Initio Molecular Dynamics for Open-Shell Transition Metals, Phys. Rev. B 48, 13115 (1993).
- G. Kresse and J. Furthmüller, Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set, Phys. Rev. B 54, 11169 (1996).
- J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77, 3865 (1996).
- P. E. Blöchl, Projector Augmented-Wave Method, Phys. Rev. B 50, 17953 (1994).
- G. Kresse and D. Joubert, From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method, Phys. Rev. B 59, 1758 (1999).
- N. Troullier and J. L. Martins, Efficient Pseudopotentials for Plane-Wave Calculations, Phys. Rev. B 43, 1993 (1991).
- F. Crasto de Lima and A. Fazzio, At the Verge of Topology: Vacancy-Driven Quantum Spin Hall in Trivial Insulators, Nano Letters 21, 9398–9402 (2021).
- A. Pezo, F. C. de Lima, and A. Fazzio, Electronic and Spin Transport in Bismuthene with Magnetic Impurities, Solid State Communications 376, 115358 (2023).
- R. L. H. Freire, F. C. de Lima, and A. Fazzio, Vacancy Localization Effects on MX2subscriptMX2{\mathrm{MX}}_{2}roman_MX start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT Transition-Metal Dichalcogenides: A Systematic Ab Initio Study, Phys. Rev. Mater. 6, 084002 (2022).
- Y.-W. Son, M. L. Cohen, and S. G. Louie, Energy Gaps in Graphene Nanoribbons, Phys. Rev. Lett. 97, 216803 (2006).
- S. Essert and K. Richter, Magnetotransport in disordered two-dimensional topological insulators: signatures of charge puddles, 2D Materials 2, 024005 (2015).
- B. Kramer and A. MacKinnon, Localization: Theory and Experiment, Reports on Progress in Physics 56, 1469 (1993).