Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exploring Topological Transport in Pt$_2$HgSe$_3$ Nanoribbons: Insights for Spintronic Device Integration (2405.06861v1)

Published 11 May 2024 in cond-mat.mes-hall and cond-mat.mtrl-sci

Abstract: The discovery of the quantum spin Hall effect led to the exploration of the electronic transport for spintronic devices. Here, we theoretically investigated the electronic conductance in large-gap realistic quantum spin Hall system, Pt$_2$HgSe$_3$ nanoribbons. By an ab initio approach, we found that the edge states present a penetration depth of about $0.9$\,{nm}, which is much smaller than those predicted in other 2D topological systems. Thus, suggesting that Pt$_2$HgSe$_3$ allows the exploitation of topological transport properties in narrow ribbons. Using non-equilibrium Green's functions calculations, we have examined the electron conductivity upon the presence of Se\,$\leftrightarrow$\,Hg antistructure defects randomly distributed in the Pt$_2$HgSe$_3$ scattering region. By considering scattering lengths up to $109$\,nm, we found localization lengths that can surpass $\mu$m sizes for narrow nanoribbons ($<9$\,nm). These findings can contribute to further understanding the behavior of topological insulators under realistic conditions and their integration within electronic, spintronic devices.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (17)
  1. M. Z. Hasan and C. L. Kane, Colloquium: Topological Insulators, Rev. Mod. Phys. 82, 3045 (2010).
  2. K. L. Wang, M. Lang, and X. Kou, Spintronics of Topological Insulators, in Handbook of Spintronics (Springer Netherlands, 2016) p. 431–462.
  3. R. L. H. Freire, F. C. de Lima, and A. Fazzio, Substrate Suppression of Oxidation Process in Pnictogen Monolayers, Physical Chemistry Chemical Physics 26, 9149–9154 (2024).
  4. F. C. de Lima, R. H. Miwa, and A. Fazzio, Jacutingaite-Family: A Class of Topological Materials, Phys. Rev. B 102, 235153 (2020).
  5. C. L. Kane and E. J. Mele, Quantum Spin Hall Effect in Graphene, Phys. Rev. Lett. 95, 226801 (2005).
  6. G. Kresse and J. Hafner, Ab Initio Molecular Dynamics for Open-Shell Transition Metals, Phys. Rev. B 48, 13115 (1993).
  7. G. Kresse and J. Furthmüller, Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set, Phys. Rev. B 54, 11169 (1996).
  8. J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77, 3865 (1996).
  9. P. E. Blöchl, Projector Augmented-Wave Method, Phys. Rev. B 50, 17953 (1994).
  10. G. Kresse and D. Joubert, From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method, Phys. Rev. B 59, 1758 (1999).
  11. N. Troullier and J. L. Martins, Efficient Pseudopotentials for Plane-Wave Calculations, Phys. Rev. B 43, 1993 (1991).
  12. F. Crasto de Lima and A. Fazzio, At the Verge of Topology: Vacancy-Driven Quantum Spin Hall in Trivial Insulators, Nano Letters 21, 9398–9402 (2021).
  13. A. Pezo, F. C. de Lima, and A. Fazzio, Electronic and Spin Transport in Bismuthene with Magnetic Impurities, Solid State Communications 376, 115358 (2023).
  14. R. L. H. Freire, F. C. de Lima, and A. Fazzio, Vacancy Localization Effects on MX2subscriptMX2{\mathrm{MX}}_{2}roman_MX start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT Transition-Metal Dichalcogenides: A Systematic Ab Initio Study, Phys. Rev. Mater. 6, 084002 (2022).
  15. Y.-W. Son, M. L. Cohen, and S. G. Louie, Energy Gaps in Graphene Nanoribbons, Phys. Rev. Lett. 97, 216803 (2006).
  16. S. Essert and K. Richter, Magnetotransport in disordered two-dimensional topological insulators: signatures of charge puddles, 2D Materials 2, 024005 (2015).
  17. B. Kramer and A. MacKinnon, Localization: Theory and Experiment, Reports on Progress in Physics 56, 1469 (1993).

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com