Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Nonlinear classification of neural manifolds with contextual information (2405.06851v1)

Published 10 May 2024 in q-bio.NC, cond-mat.dis-nn, cond-mat.stat-mech, cs.NE, and stat.ML

Abstract: Understanding how neural systems efficiently process information through distributed representations is a fundamental challenge at the interface of neuroscience and machine learning. Recent approaches analyze the statistical and geometrical attributes of neural representations as population-level mechanistic descriptors of task implementation. In particular, manifold capacity has emerged as a promising framework linking population geometry to the separability of neural manifolds. However, this metric has been limited to linear readouts. Here, we propose a theoretical framework that overcomes this limitation by leveraging contextual input information. We derive an exact formula for the context-dependent capacity that depends on manifold geometry and context correlations, and validate it on synthetic and real data. Our framework's increased expressivity captures representation untanglement in deep networks at early stages of the layer hierarchy, previously inaccessible to analysis. As context-dependent nonlinearity is ubiquitous in neural systems, our data-driven and theoretically grounded approach promises to elucidate context-dependent computation across scales, datasets, and models.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (14)
  1. S. Chung and L. Abbott, Curr. opin. neurobiol. 70, 137 (2021).
  2. T. J. Buschman and S. Kastner, Neuron 88, 127 (2015).
  3. M. F. Panichello and T. J. Buschman, Nature 592, 601 (2021).
  4. T. Moore and K. M. Armstrong, Nature 421, 370 (2003).
  5. T. J. Buschman and E. K. Miller, science 315, 1860 (2007).
  6. M. London and M. Häusser, Annu. Rev. Neurosci. 28, 503 (2005).
  7. E. Sezener et al., bioRxiv  (2022), 10.1101/2021.03.10.434756.
  8. J. Veness et al., in Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35 (2021).
  9. Q. Li and H. Sompolinsky, Advances in Neural Information Processing Systems 35, 34789 (2022).
  10. E. Gardner, Journal of physics A: Mathematical and general 21, 257 (1988).
  11. R. Monasson and R. Zecchina, Modern Physics Letters B 9, 1887 (1995).
  12. J. A. Zavatone-Veth and C. Pehlevan, Physical Review E 103, L020301 (2021).
  13. T. M. Cover, IEEE transactions on electronic computers  (1965).
  14. C. Stephenson et al., in ICLR 2021 (2021).
Citations (1)

Summary

We haven't generated a summary for this paper yet.