Self-Consistent Recursive Diffusion Bridge for Medical Image Translation (2405.06789v1)
Abstract: Denoising diffusion models (DDM) have gained recent traction in medical image translation given improved training stability over adversarial models. DDMs learn a multi-step denoising transformation to progressively map random Gaussian-noise images onto target-modality images, while receiving stationary guidance from source-modality images. As this denoising transformation diverges significantly from the task-relevant source-to-target transformation, DDMs can suffer from weak source-modality guidance. Here, we propose a novel self-consistent recursive diffusion bridge (SelfRDB) for improved performance in medical image translation. Unlike DDMs, SelfRDB employs a novel forward process with start- and end-points defined based on target and source images, respectively. Intermediate image samples across the process are expressed via a normal distribution with mean taken as a convex combination of start-end points, and variance from additive noise. Unlike regular diffusion bridges that prescribe zero variance at start-end points and high variance at mid-point of the process, we propose a novel noise scheduling with monotonically increasing variance towards the end-point in order to boost generalization performance and facilitate information transfer between the two modalities. To further enhance sampling accuracy in each reverse step, we propose a novel sampling procedure where the network recursively generates a transient-estimate of the target image until convergence onto a self-consistent solution. Comprehensive analyses in multi-contrast MRI and MRI-CT translation indicate that SelfRDB offers superior performance against competing methods.
- J. E. Iglesias, E. Konukoglu, D. Zikic, B. Glocker, K. Van Leemput, and B. Fischl, “Is synthesizing MRI contrast useful for inter-modality analysis?” in Med Image Comput Comput Assist Interv, 2013, pp. 631–638.
- J. Lee, A. Carass, A. Jog, C. Zhao, and J. Prince, “Multi-atlas-based CT synthesis from conventional MRI with patch-based refinement for MRI-based radiotherapy planning,” in SPIE Med Imag., vol. 10133, 2017, p. 101331I.
- D. H. Ye, D. Zikic, B. Glocker, A. Criminisi, and E. Konukoglu, “Modality propagation: Coherent synthesis of subject-specific scans with data-driven regularization,” in Med Image Comput Comput Assist Interv, 2013, pp. 606–613.
- T. Huynh, Y. Gao, J. Kang, L. Wang, P. Zhang, J. Lian, and D. Shen, “Estimating CT image from MRI data using structured random forest and auto-context model,” IEEE Trans Med Imag, vol. 35, no. 1, pp. 174–183, 2016.
- A. Jog, A. Carass, S. Roy, D. L. Pham, and J. L. Prince, “Random forest regression for magnetic resonance image synthesis,” Med Image Anal, vol. 35, pp. 475–488, 2017.
- T. Joyce, A. Chartsias, and S. A. Tsaftaris, “Robust multi-modal MR image synthesis,” in Med Image Comput Comput Assist Interv, 2017, pp. 347–355.
- N. Cordier, H. Delingette, M. Le, and N. Ayache, “Extended modality propagation: Image synthesis of pathological cases,” IEEE Trans Med Imag, vol. 35, pp. 2598–2608, 2016.
- Y. Wu, W. Yang, L. Lu, Z. Lu, L. Zhong, M. Huang, Y. Feng, Q. Feng, and W. Chen, “Prediction of CT substitutes from MR images based on local diffeomorphic mapping for brain PET attenuation correction,” J Nucl Med, vol. 57, no. 10, pp. 1635–1641, 2016.
- C. Zhao, A. Carass, J. Lee, Y. He, and J. L. Prince, “Whole brain segmentation and labeling from CT using synthetic MR images,” in Mach Learn Med Imaging, 2017, pp. 291–298.
- Y. Huang, L. Shao, and A. F. Frangi, “Cross-modality image synthesis via weakly coupled and geometry co-regularized joint dictionary learning,” IEEE Trans Med Imag, vol. 37, no. 3, pp. 815–827, 2018.
- D. Lee, J. Kim, W.-J. Moon, and J. C. Ye, “CollaGAN: Collaborative GAN for missing image data imputation,” in Comput Vis Pattern Recognit, 2019, pp. 2487–2496.
- L. T. Clark et al., “Increasing Diversity in Clinical Trials: Overcoming Critical Barriers,” Cur. Prob. Cardiol., vol. 44, no. 5, pp. 148–172, 2019.
- S. Roy, A. Jog, A. Carass, and J. L. Prince, “Atlas based intensity transformation of brain MR images,” in Multimodal Brain Image Anal., 2013, pp. 51–62.
- D. C. Alexander, D. Zikic, J. Zhang, H. Zhang, and A. Criminisi, “Image quality transfer via random forest regression: Applications in diffusion MRI,” in Med Image Comput Comput Assist Interv, 2014, pp. 225–232.
- Y. Huang, L. Shao, and A. F. Frangi, “Simultaneous super-resolution and cross-modality synthesis of 3D medical images using weakly-supervised joint convolutional sparse coding,” Comput Vis Pattern Recognit, pp. 5787–5796, 2017.
- H. Van Nguyen, K. Zhou, and R. Vemulapalli, “Cross-domain synthesis of medical images using efficient location-sensitive deep network,” in Med Image Comput Comput Assist Interv, 2015, pp. 677–684.
- R. Vemulapalli, H. Van Nguyen, and S. K. Zhou, “Unsupervised cross-modal synthesis of subject-specific scans,” in Int Conf Comput Vis, 2015, pp. 630–638.
- V. Sevetlidis, M. V. Giuffrida, and S. A. Tsaftaris, “Whole image synthesis using a deep encoder-decoder network,” in Simul Synth Med Imaging, 2016, pp. 127–137.
- D. Nie, X. Cao, Y. Gao, L. Wang, and D. Shen, “Estimating CT image from MRI data using 3D fully convolutional networks,” in Deep Learn Data Label Med Appl, 2016, pp. 170–178.
- C. Bowles et al., “Pseudo-healthy image synthesis for white matter lesion segmentation,” in Simul Synth Med Imaging, 2016, pp. 87–96.
- A. Chartsias, T. Joyce, M. V. Giuffrida, and S. A. Tsaftaris, “Multimodal MR synthesis via modality-invariant latent representation,” IEEE Trans Med Imag, vol. 37, no. 3, pp. 803–814, 2018.
- W. Wei, E. Poirion, B. Bodini, S. Durrleman, O. Colliot, B. Stankoff, and N. Ayache, “Fluid-attenuated inversion recovery MRI synthesis from multisequence MRI using three-dimensional fully convolutional networks for multiple sclerosis,” J Med Imaging, vol. 6, no. 1, p. 014005, 2019.
- B. Yu, L. Zhou, L. Wang, J. Fripp, and P. Bourgeat, “3D cGAN based cross-modality MR image synthesis for brain tumor segmentation,” Int. Symp. Biomed. Imaging, pp. 626–630, 2018.
- K. Armanious, C. Jiang, M. Fischer, T. Küstner, T. Hepp, K. Nikolaou, S. Gatidis, and B. Yang, “MedGAN: Medical image translation using GANs,” Comput Med Imaging Grap, vol. 79, p. 101684, 2019.
- H. Li, J. C. Paetzold, A. Sekuboyina, F. Kofler, J. Zhang, J. S. Kirschke, B. Wiestler, and B. Menze, “DiamondGAN: Unified multi-modal generative adversarial networks for MRI sequences synthesis,” in Med. Image Comput Comput Assist Interv, 2019, pp. 795–803.
- D. Nie, R. Trullo, J. Lian, L. Wang, C. Petitjean, S. Ruan, and Q. Wang, “Medical image synthesis with deep convolutional adversarial networks,” IEEE Trans. Biomed. Eng., vol. 65, no. 12, pp. 2720–2730, 2018.
- S. U. Dar, M. Yurt, L. Karacan, A. Erdem, E. Erdem, and T. Cukur, “Image synthesis in multi-contrast MRI with conditional generative adversarial networks,” IEEE Trans Med Imaging, vol. 38, no. 10, pp. 2375–2388, 2019.
- B. Yu, L. Zhou, L. Wang, Y. Shi, J. Fripp, and P. Bourgeat, “Ea-GANs: Edge-aware generative adversarial networks for cross-modality MR image synthesis,” IEEE Trans Med Imag, vol. 38, no. 7, pp. 1750–1762, 2019.
- H. Yang, J. Sun, A. Carass, C. Zhao, J. Lee, Z. Xu, and J. Prince, “Unpaired brain MR-to-CT synthesis using a structure-constrained cycleGAN,” arXiv:1809.04536, 2018.
- C.-B. Jin, H. Kim, M. Liu, W. Jung, S. Joo, E. Park, Y. S. Ahn, I. H. Han, J. I. Lee, and X. Cui, “Deep CT to MR synthesis using paired and unpaired data,” Sensors, vol. 19, no. 10, p. 2361, 2019.
- O. Dalmaz, M. Yurt, and T. Çukur, “ResViT: Residual vision transformers for multi-modal medical image synthesis,” IEEE Trans Med Imaging, vol. 44, no. 10, pp. 2598–2614, 2022.
- G. Wang, E. Gong, S. Banerjee, D. Martin, E. Tong, J. Choi, H. Chen, M. Wintermark, J. M. Pauly, and G. Zaharchuk, “Synthesize high-quality multi-contrast magnetic resonance imaging from multi-echo acquisition using multi-task deep generative model,” IEEE Trans Med Imag, vol. 39, no. 10, pp. 3089–3099, 2020.
- T. Zhou, H. Fu, G. Chen, J. Shen, and L. Shao, “Hi-Net: Hybrid-fusion network for multi-modal MR image synthesis,” IEEE Trans Med Imag, vol. 39, no. 9, pp. 2772–2781, 2020.
- M. Özbey, S. U. Dar, H. A. Bedel, O. Dalmaz, Ş. Özturk, A. Güngör, and T. Çukur, “Unsupervised medical image translation with adversarial diffusion models,” IEEE Trans Med Imaging, vol. 42, no. 12, pp. 3524–3539, 2023.
- X. Meng, Y. Gu, Y. Pan, N. Wang, P. Xue, M. Lu, X. He, Y. Zhan, and D. Shen, “A novel unified conditional score-based generative framework for multi-modal medical image completion,” arXiv:2207.03430, 2022.
- Q. Lyu and G. Wang, “Conversion between CT and MRI images using diffusion and score-matching models,” arXiv:2209.12104, 2022.
- Z. Wang, Y. Yang, Y. Chen, T. Yuan, M. Sermesant, H. Delingette, and O. Wu, “Mutual information guided diffusion for zero-shot cross-modality medical image translation,” IEEE Trans Med Imaging, pp. 1–1, 2024.
- Y. Song, L. Shen, L. Xing, and S. Ermon, “Solving inverse problems in medical imaging with score-based generative models,” arXiv:2111.08005, 2021.
- A. Güngör, S. U. Dar, Şaban Öztürk, Y. Korkmaz, H. A. Bedel, G. Elmas, M. Ozbey, and T. Çukur, “Adaptive diffusion priors for accelerated mri reconstruction,” Med Image Anal, p. 102872, 2023.
- J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” in Adv Neural Inf Process Syst, vol. 33, 2020, pp. 6840–6851.
- M. Delbracio and P. Milanfar, “Inversion by direct iteration: An alternative to denoising diffusion for image restoration,” Tran. Mach. Learn. Res., 2023.
- H. Chung, J. Kim, and J. C. Ye, “Direct diffusion bridge using data consistency for inverse problems,” arXiv:2305.19809, 2023.
- G.-H. Liu, A. Vahdat, D.-A. Huang, E. A. Theodorou, W. Nie, and A. Anandkumar, “I2SB: Image-to-Image Schrödinger Bridge,” arXiv:2302.05872, 2023.
- B. Kim, G. Kwon, K. Kim, and J. C. Ye, “Unpaired image-to-image translation via neural schrödinger bridge,” in ICLR, 2024.
- M. U. Mirza, O. Dalmaz, H. A. Bedel, G. Elmas, Y. Korkmaz, A. Gungor, S. U. Dar, and T. Çukur, “Learning Fourier-Constrained Diffusion Bridges for MRI Reconstruction,” arXiv:2308.01096, 2023.
- J. Kim and J. C. Ye, “HiCBridge: Resolution enhancement of hi-c data using direct diffusion bridge,” 2024. [Online]. Available: https://openreview.net/forum?id=RUvzlotXY0
- X. Su, J. Song, C. Meng, and S. Ermon, “Dual diffusion implicit bridges for image-to-image translation,” arXic:2203.08382, 2023.
- C. Peng, P. Guo, S. K. Zhou, V. Patel, and R. Chellappa, “Towards performant and reliable undersampled mr reconstruction via diffusion model sampling,” arXiv:2203.04292, 2022.
- J. M. Wolterink, A. M. Dinkla, M. H. F. Savenije, P. R. Seevinck, C. A. T. van den Berg, and I. Išgum, “Deep MR to CT synthesis using unpaired data,” in Simul Synth Med Imaging, Cham, 2017, pp. 14–23.
- X. Dong, T. Wang, Y. Lei, K. Higgins, T. Liu, W. Curran, H. Mao, J. Nye, and X. Yang, “Synthetic CT generation from non-attenuation corrected PET images for whole-body PET imaging,” Phys Med Biol, vol. 64, no. 21, p. 215016, 2019.
- G. Daras, M. Delbracio, H. Talebi, A. G. Dimakis, and P. Milanfar, “Soft diffusion: Score matching for general corruptions,” arXiv:2209.05442, 2022.
- T. Chen, G.-H. Liu, and E. A. Theodorou, “Likelihood training of schr\\\backslash\” odinger bridge using forward-backward sdes theory,” arXiv preprint arXiv:2110.11291, 2021.
- Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole, “Score-based generative modeling through stochastic differential equations,” arXiv:2011.13456, 2020.
- Z. Chen, G. He, K. Zheng, X. Tan, and J. Zhu, “Schrodinger bridges beat diffusion models on text-to-speech synthesis,” arXiv preprint arXiv:2312.03491, 2023.
- Y. Song and S. Ermon, “Generative modeling by estimating gradients of the data distribution,” Advances in neural information processing systems, vol. 32, 2019.
- Z. Xiao, K. Kreis, and A. Vahdat, “Tackling the generative learning trilemma with denoising diffusion GANs,” in Int Conf Learn Represent, 2022.
- S. U. Dar, M. Yurt, L. Karacan, A. Erdem, E. Erdem, and T. Çukur, “Image synthesis in multi-contrast MRI with conditional generative adversarial networks,” IEEE Trans Med Imag, vol. 38, no. 10, pp. 2375–2388, 2019.
- B. H. Menze et al., “The multimodal brain tumor image segmentation benchmark (BRATS),” IEEE Trans Med Imag, vol. 34, no. 10, pp. 1993–2024, 2015.
- T. Nyholm et al., “MR and CT data with multiobserver delineations of organs in the pelvic area—part of the gold atlas project,” Med Phys, vol. 45, no. 3, pp. 1295–1300, 2018.
- M. Jenkinson and S. Smith, “A global optimisation method for robust affine registration of brain images,” Med Image Anal, vol. 5, pp. 143–156, 2001.
- O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in Med Image Comput Comput Assist Inter. Springer, 2015, pp. 234–241.
- A. Q. Nichol and P. Dhariwal, “Improved denoising diffusion probabilistic models,” in Int Conf Mach Learn, 2021, pp. 8162–8171.
- H. Lan, A. Toga, and F. Sepehrband, “SC-GAN: 3D self-attention conditional GAN with spectral normalization for multi-modal neuroimaging synthesis,” bioRxiv:2020.06.09.143297, 2020.
- Y. Ge, D. Wei, Z. Xue, Q. Wang, X. Zhou, Y. Zhan, and S. Liao, “Unpaired MR to CT synthesis with explicit structural constrained adversarial learning,” in Int. Symp. Biomed. Imaging, 2019, pp. 1096–1099.
- G. Elmas, S. U. Dar, Y. Korkmaz, E. Ceyani, B. Susam, M. Özbey, S. Avestimehr, and T. Çukur, “Federated Learning of Generative Image Priors for MRI Reconstruction,” IEEE Trans Med Imaging, vol. 42, no. 7, pp. 1996–2009, 2023.
- A. Sharma and G. Hamarneh, “Missing MRI pulse sequence synthesis using multi-modal generative adversarial network,” IEEE Trans Med Imag, vol. 39, pp. 1170–1183, 2020.
- M. Yurt, S. U. Dar, A. Erdem, E. Erdem, K. K. Oguz, and T. Çukur, “mustGAN: multi-stream generative adversarial networks for MR image synthesis,” Med Image Anal, vol. 70, p. 101944, 2021.
- Y. Luo, Y. Wang, C. Zu, B. Zhan, X. Wu, J. Zhou, D. Shen, and L. Zhou, “3D Transformer-GAN for high-quality PET reconstruction,” in Med Image Comput Comput Assist Interv, 2021, pp. 276–285.
- A. Gungor, B. Askin, D. A. Soydan, E. U. Saritas, C. B. Top, and T. Çukur, “TranSMS: Transformers for super-resolution calibration in magnetic particle imaging,” IEEE Trans Med Imaging, vol. 41, no. 12, pp. 3562–3574, 2022.
- Y. Korkmaz, S. U. H. Dar, M. Yurt, M. Ozbey, and T. Cukur, “Unsupervised MRI reconstruction via zero-shot learned adversarial transformers,” IEEE Trans Med Imaging, vol. 41, no. 7, pp. 1747–1763, 2022.
- Y. Korkmaz, T. Cukur, and V. M. Patel, “Self-supervised mri reconstruction with unrolled diffusion models,” in MICCAI, 2023, pp. 491–501.
- H. Chung, B. Sim, and J. C. Ye, “Come-closer-diffuse-faster: Accelerating conditional diffusion models for inverse problems through stochastic contraction,” in IEEE Conf Comput Vis Pattern Recognit, 2022, pp. 12 413–12 422.
- H. A. Bedel and T. Çukur, “DreaMR: Diffusion-driven counterfactual explanation for functional MRI,” arXiv:2307.09547, 2023.
- Fuat Arslan (4 papers)
- Bilal Kabas (6 papers)
- Onat Dalmaz (10 papers)
- Tolga Çukur (48 papers)
- Muzaffer Ozbey (1 paper)