Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Monotone Circuit Construction for Individually-Secure Multi-Secret Sharing (2405.06773v1)

Published 10 May 2024 in cs.IT and math.IT

Abstract: In this work, we introduce a new technique for taking a single-secret sharing scheme with a general access structure and transforming it into an individually secure multi-secret sharing scheme where every secret has the same general access structure. To increase the information rate, we consider Individual Security which guarantees zero mutual information with each secret individually, for any unauthorized subsets. Our approach involves identifying which shares of the single-secret sharing scheme can be replaced by linear combinations of messages. When $m-1$ shares are replaced, our scheme obtains an information rate of $m/|S|$, where $S$ is the set of shares. This provides an improvement over the information rate of $1/|S|$ in the original single-secret sharing scheme.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (41)
  1. G. R. Blakely, “Safeguarding cryptographic keys,” in Proc. AFIPS, vol. 48, 1979, pp. 313–317.
  2. A. Shamir, “How to share a secret,” in Commun. of the ACM, vol. 22, 1979, pp. 612–613.
  3. M. Ito, A. Saito, and T. Nishizeki, “Secret sharing scheme realizing general access structure,” in Proc. IEEE Global Telecom. Conf. (Globecom ’87), 1987, pp. 99–102.
  4. J. Benaloh and J. Leichter, “Generalized secret sharing and monotone functions,” in Advances in Cryptology — CRYPTO ’88, ser. Lecture Notes in Computer Science.   Berlin: Springer-Verlag, 1990, no. 403, pp. 27–35.
  5. D. R. Stinson, “An explication of secret sharing schemes,” in Designs, Codes and Cryptography.   Springer, Dec. 1992, vol. 2, pp. 357–390.
  6. C. E. Shannon, “Communication theory of secrecy systems,” The Bell system technical journal, vol. 28, no. 4, pp. 656–715, 1949.
  7. ——, “A mathematical theory of cryptography,” Bell System Technical Memo MM 45-110-02, 1945.
  8. ——, “A mathematical theory of communication,” The Bell system technical journal, vol. 27, no. 3, pp. 379–423, 1948.
  9. A. D. Wyner, “The wire-tap channel,” Bell system technical journal, vol. 54, no. 8, pp. 1355–1387, 1975.
  10. L. H. Ozarow and A. D. Wyner, “Wire-tap channel II,” AT&T Bell Laboratories technical journal, vol. 63, no. 10, pp. 2135–2157, 1984.
  11. A. Carleial and M. E. Hellman, “A note on wyner’s wiretap channel (corresp.),” IEEE Trans. Inform. Theory, vol. 23, no. 3, pp. 387–390, May 1977.
  12. D. Kobayashi, H. Yamamoto, and T. Ogawa, “Secure multiplex coding attaining channel capacity in wiretap channels,” IEEE Trans. on Inf. Theory, vol. 59, no. 12, pp. 8131–8143, 2013.
  13. A. S. Mansour, R. F. Schaefer, and H. Boche, “Secrecy measures for broadcast channels with receiver side information: Joint vs individual,” in 2014 IEEE Information Theory Workshop (ITW 2014).   IEEE, 2014, pp. 426–430.
  14. Y. Chen, O. O. Koyluoglu, and A. Sezgin, “On the individual secrecy rate region for the broadcast channel with an external eavesdropper,” in 2015 IEEE International Symposium on Information Theory (ISIT).   IEEE, 2015, pp. 1347–1351.
  15. A. S. Mansour, R. F. Schaefer, and H. Boche, “The individual secrecy capacity of degraded multi-receiver wiretap broadcast channels,” in 2015 IEEE International Conference on Communications (ICC).   IEEE, 2015, pp. 4181–4186.
  16. ——, “On the individual secrecy capacity regions of the general, degraded, and gaussian multi-receiver wiretap broadcast channel,” IEEE Transactions on Information Forensics and Security, vol. 11, no. 9, pp. 2107–2122, 2016.
  17. M. Goldenbaum, R. F. Schaefer, and H. V. Poor, “The multiple-access channel with an external eavesdropper: Trusted vs. untrusted users,” in 2015 49th Asilomar Conference on Signals, Systems and Computers.   IEEE, 2015, pp. 564–568.
  18. Y. Chen, O. O. Koyluoglu, and A. H. Vinck, “On secure communication over the multiple access channel,” in 2016 International Symposium on Information Theory and Its Applications (ISITA).   IEEE, 2016, pp. 350–354.
  19. K. Bhattad, K. R. Narayanan et al., “Weakly secure network coding,” NetCod, Apr, vol. 104, pp. 8–20, 2005.
  20. D. Silva and F. R. Kschischang, “Universal weakly secure network coding,” in 2009 IEEE Information Theory Workshop on Networking and Information Theory.   IEEE, 2009, pp. 281–285.
  21. A. Cohen, A. Cohen, M. Medard, and O. Gurewitz, “Secure multi-source multicast,” IEEE Transactions on Communications, vol. 67, no. 1, pp. 708–723, 2018.
  22. L. Lima, M. Médard, and J. Barros, “Random linear network coding: A free cipher?” in 2007 IEEE International Symposium on Information Theory.   IEEE, 2007, pp. 546–550.
  23. J. Claridge and I. Chatzigeorgiou, “Probability of partially decoding network-coded messages,” IEEE Communications Letters, vol. 21, no. 9, pp. 1945–1948, 2017.
  24. A. Cohen, R. G. L. D’Oliveira, C.-Y. Yeh, H. Guerboukha, R. Shrestha, Z. Fang, E. Knightly, M. Médard, and D. M. Mittleman, “Absolute security in terahertz wireless links,” IEEE Journal of Selected Topics in Signal Processing, 2023.
  25. C.-Y. Yeh, A. Cohen, R. G. L. D’Oliveira, M. Médard, D. M. Mittleman, and E. W. Knightly, “Securing angularly dispersive terahertz links with coding,” IEEE Trans. on Inf. Forensics and Security, 2023.
  26. S. Kadhe and A. Sprintson, “Weakly secure regenerating codes for distributed storage,” in 2014 International Symposium on Network Coding (NetCod).   IEEE, 2014, pp. 1–6.
  27. ——, “On a weakly secure regenerating code construction for minimum storage regime,” in 2014 52nd Annual Allerton Conference on Communication, Control, and Computing (Allerton).   IEEE, 2014, pp. 445–452.
  28. N. Paunkoska, V. Kafedziski, and N. Marina, “Improved perfect secrecy of distributed storage systems using interference alignment,” in 2016 8th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT).   IEEE, 2016, pp. 240–245.
  29. ——, “Improving the secrecy of distributed storage systems using interference alignment,” in 2018 14th International Wireless Communications & Mobile Computing Conference (IWCMC).   IEEE, 2018, pp. 261–266.
  30. J. Bian, S. Luo, Z. Li, and Y. Yang, “Optimal weakly secure minimum storage regenerating codes scheme,” IEEE Access, vol. 7, pp. 151 120–151 130, 2019.
  31. E. D. Karnin, J. W. Greene, and M. E. Hellman, “On secret sharing systems,” IEEE Trans. Inform. Theory, vol. 29, no. 1, pp. 35–41, Jan. 1983.
  32. W.-A. Jackson, K. M. Martin, and C. M. O’Keefe, “Multisecret threshold schemes,” in Advances in Cryptology — CRYPTO ’93’, ser. Lecture Notes in Computer Science, D. R. Stinson, Ed.   Berlin: Springer-Verlag, 1994, vol. 773, pp. 126–135.
  33. W.-A. Jackson, K. M. Matrin, and C. M. O’Keefe, “A construction for multi-secret threshold schemes,” Designs, Codes, and Cryptography, vol. 9, pp. 287–303, 1996.
  34. C. Blundo, A. D. Santis, G. D. Crescenzo, A. G. Gaggia, and U. Vaccaro, “Multi-secret sharing schemes,” in Advances in Cryptology — CRYPTO ’94’, ser. Lecture Notes in Computer Science.   Berlin: Springer-Verlag, 1994, vol. 839, pp. 150–163.
  35. W.-A. Jackson, K. M. Martin, and C. M. O’Keefe, “Ideal secret sharing schemes with multiple secrets,” Journal of Cryptology, vol. 9, pp. 233–250, 1996.
  36. G. D. Crescenzo, “Sharing one secret vs. sharing many secrets,” Theoretical Computer Science, vol. 295, no. 1, pp. 123–140, Feb. 2003.
  37. C. Blundo, A. D. Santis, and U. Vaccaro, “Efficient sharing of many secrets,” in Proc. STACS ’93’, ser. Lecture Notes in Computer Science, vol. 665.   Berlin: Springer-Verlag, 1993, pp. 692–703.
  38. E. F. Brickell, “Some ideal secret sharing schemes,” in Workshop on the Theory and Application of of Cryptographic Techniques.   Springer, 1989, pp. 468–475.
  39. G. J. Simmons, “How to (really) share a secret,” in Conference on the Theory and Application of Cryptography.   Springer, 1988, pp. 390–448.
  40. ——, “An introduction to shared secret and/or shared control schemes and their application,” Contemporary cryptology, pp. 441–497, 1991.
  41. K. Martin, G. Simmons, and W.-A. Jackson, “The geometry of shared secret schemes,” Bulletin of the ICA, vol. 1, pp. 71–88, 1991.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com