Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Analyzing Language Bias Between French and English in Conventional Multilingual Sentiment Analysis Models (2405.06692v1)

Published 7 May 2024 in cs.CL

Abstract: Inspired by the 'Bias Considerations in Bilingual Natural Language Processing' report by Statistics Canada, this study delves into potential biases in multilingual sentiment analysis between English and French. Given a 50-50 dataset of French and English, we aim to determine if there exists a language bias and explore how the incorporation of more diverse datasets in the future might affect the equity of multilingual NLP systems. By employing Support Vector Machine (SVM) and Naive Bayes models on three balanced datasets, we reveal potential biases in multilingual sentiment classification. Utilizing Fairlearn, a tool for assessing bias in machine learning models, our findings indicate nuanced outcomes. With French data outperforming English across accuracy, recall, and F1 score metrics in both models, hinting at a language bias favoring French. However, Fairlearn's metrics suggest that the SVM approaches equitable levels with a demographic parity ratio of 0.963, 0.989, and 0.985 for the three separate datasets, indicating near-equitable treatment across languages. In contrast, Naive Bayes demonstrates greater disparities, evidenced by a demographic parity ratio of 0.813, 0.908, and 0.961. These findings reveal the importance of developing equitable multilingual NLP systems, particularly as we anticipate the inclusion of more datasets in various languages in the future.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Ethan Parker Wong (1 paper)
  2. Faten M'hiri (1 paper)
Citations (1)
X Twitter Logo Streamline Icon: https://streamlinehq.com