Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SPERO: Simultaneous Power/EM Side-channel Dataset Using Real-time and Oscilloscope Setups (2405.06571v1)

Published 10 May 2024 in cs.CE

Abstract: Cryptosystem implementations often disclose information regarding a secret key due to correlations with side channels such as power consumption, timing variations, and electromagnetic emissions. Since power and EM channels can leak distinct information, the combination of EM and power channels could increase side-channel attack efficiency. In this paper, we develop a miniature dual-channel side-channel detection platform, named RASCv3 to successfully extract subkeys from both unmasked and masked AES modules. For the unmasked AES, we combine EM and power channels by using mutual information to extract the secret key in real-time mode and the experiment result shows that less measurements-to-disclosure (MTD) is used than the last version (RASCv2). Further, we adopt RASCv3 to collect EM/Power traces from the masked AES module and successfully extract the secret key from the masked AES module in fewer power/EM/dual channel traces. In the end, we generate an ASCAD format dataset named SPERO, which consists of EM and power traces collected simultaneously during unmasked/masked AES module doing encryption and upload to the community for future use.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (38)
  1. P. Kocher, J. Jaffe, and B. Jun, “Differential Power Analysis,” in Advances in Cryptology—CRYPTO’99.   Springer, 1999, pp. 388–397.
  2. P. Kocher, J. Jaffe, B. Jun, and P. Rohatgi, “Introduction to Differential Power Analysis,” Journal of Cryptographic Engineering, vol. 1, pp. 5–27, 2011.
  3. P. Kocher, J. Jaffe, B. Jun et al., “Introduction to Differential Power Analysis and Related Attacks,” 1998.
  4. E. Brier, C. Clavier, and F. Olivier, “Correlation Power Analysis with a Leakage Model,” in Cryptographic Hardware and Embedded Systems (CHES) 2004.   Springer, 2004, pp. 16–29.
  5. K. Gandolfi, C. Mourtel, and F. Olivier, “Electromagnetic Analysis: Concrete Results,” in Cryptographic Hardware and Embedded Systems (CHES) 2001.   Springer, 2001, pp. 251–261.
  6. D. Agrawal, B. Archambeault, J. R. Rao, and P. Rohatgi, “The EM Side—channel(s),” in Cryptographic Hardware and Embedded Systems (CHES) 2002, pages=29–45, year=2003, organization=Springer.
  7. F. Pub, “Data Encryption Standard (DES),” FIPS PUB, pp. 46–3, 1999.
  8. X. Zhou and X. Tang, “Research and implementation of rsa algorithm for encryption and decryption,” in Proceedings of 2011 6th International Forum on Strategic Technology, vol. 2.   IEEE, 2011, pp. 1118–1121.
  9. P. Mahajan and A. Sachdeva, “A study of encryption algorithms aes, des and rsa for security,” Global Journal of Computer Science and Technology, vol. 13, no. 15, pp. 15–22, 2013.
  10. Y. Zhou, Y. Yu, F.-X. Standaert, and J.-J. Quisquater, “On the need of physical security for small embedded devices: a case study with COMP128-1 implementations in SIM cards,” in Financial Cryptography and Data Security.   Springer, 2013, pp. 230–238.
  11. G. L. Ding, J. Chu, L. Yuan, and Q. Zhao, “Correlation Electromagnetic Analysis for Cryptographic Device,” in 2009 Pacific-Asia Conference on Circuits, Communications and Systems.   IEEE, 2009, pp. 388–391.
  12. Y. Souissi, S. Bhasin, S. Guilley, M. Nassar, and J.-L. Danger, “Towards Different Flavors of Combined Side Channel Attacks,” in Topics in Cryptology–CT-RSA 2012.   Springer, 2012, pp. 245–259.
  13. F.-X. Standaert and C. Archambeau, “Using subspace-based template attacks to compare and combine power and electromagnetic information leakages,” in International Workshop on Cryptographic Hardware and Embedded Systems.   Springer, 2008, pp. 411–425.
  14. Y. Bai, J. Park, M. Tehranipoor, and D. Forte, “Dual Channel EM/Power Attack Using Mutual Information and its Real-time Implementation,” in 2023 IEEE International Symposium on Hardware Oriented Security and Trust (HOST).   IEEE, 2023, pp. 133–143.
  15. H. Peng, F. Long, and C. Ding, “Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27, no. 8, pp. 1226–1238, 2005.
  16. C. Ding and H. Peng, “Minimum redundancy feature selection from microarray gene expression data,” Journal of Bioinformatics and Computational Biology, vol. 3, no. 02, pp. 185–205, 2005.
  17. “SPERO,” https://github.com/YunkaiUF/SPERO.
  18. “Emv,” https://www.langer-emv.de/en/index.
  19. A. Stern, K. Yang, J. Vosatka, A. Duncan, J. Park, D. Forte, and M. Tehranipoor, “Rasc: Enabling remote access to side-channels for mission critical systems,” GOMACTech, 2019.
  20. Y. Bai, A. Stern, J. Park, M. Tehranipoor, and D. Forte, “Rascv2: Enabling remote access to side-channels for mission critical and iot systems,” ACM Transactions on Design Automation of Electronic Systems (TODAES), vol. 27, no. 6, pp. 1–25, 2022.
  21. “LT2242,” https://www.analog.com/media/en/technical-documentation/data-sheets/224212fc.pdf.
  22. “Spartan3e,” https://docs.rs-online.com/eaea/0900766b80ce9c9b.pdf.
  23. “Artix7,” https://www.farnell.com/datasheets/2301213.pdf.
  24. “Chipwhisperer-lite level 2 kit,” https://www.newae.com/products/NAE-SCAPACK-L2.
  25. “MDO3102 Mixed Domain Oscilloscopes,” https://www.tek.com/en/datasheet/mixed-domain-oscilloscopes.
  26. M. I. Skolnik, “Introduction to Radar Systems,” New York, 1980.
  27. “ADC08200,” https://www.ti.com/lit/ds/symlink/adc08200.pdf.
  28. “MaskedAES,” https://github.com/CENSUS/masked_aes-c/tree/main.
  29. T. S. Messerges, “Using second-order power analysis to attack dpa resistant software,” in International Workshop on Cryptographic Hardware and Embedded Systems.   Springer, 2000, pp. 238–251.
  30. E. Oswald, S. Mangard, C. Herbst, and S. Tillich, “Practical second-order dpa attacks for masked smart card implementations of block ciphers,” in Cryptographers’ Track at the RSA Conference.   Springer, 2006, pp. 192–207.
  31. “AEScode,” https://github.com/kokke/tiny-AES-c.
  32. U. Rioja, L. Batina, J. L. Flores, and I. Armendariz, “Auto-tune POIs: Estimation of Distribution Algorithms for Efficient Side-Channel Analysis,” Computer Networks, vol. 198, p. 108405, 2021.
  33. “ANSSI,” https://github.com/ANSSI-FR/ASCAD.
  34. “AESPT,” https://github.com/urioja/AESPT.
  35. R. Benadjila, E. Prouff, R. Strullu, E. Cagli, and C. Dumas, “Deep learning for side-channel analysis and introduction to ascad database,” Journal of Cryptographic Engineering, vol. 10, no. 2, pp. 163–188, 2020.
  36. Y. Bai, J. Park, M. Tehranipoor, and D. Forte, “Real-time instruction-level verification of remote iot/cps devices via side channels,” Discover Internet of Things, vol. 2, no. 1, p. 1, 2022.
  37. G. Becker, J. Cooper, E. De Mulder, G. Goodwill, J. Jaffe, G. Kenworthy et al., “Test vector leakage assessment (TVLA) derived test requirements (DTR) with AES,” in International Cryptographic Module Conference, 2013.
  38. “SCAPEgoat,” https://github.com/vernamlab/SCApeGoat.
Citations (1)

Summary

We haven't generated a summary for this paper yet.