An Efficient Sum-Rate Maximization Algorithm for Fluid Antenna-Assisted ISAC System (2405.06516v3)
Abstract: This letter investigates a fluid antenna (FA)-assisted integrated sensing and communication (ISAC) system, with joint antenna position optimization and waveform design. We consider enhancing the sum-rate maximization (SRM) and sensing performance with the aid of FAs. Although the introduction of FAs brings more degrees of freedom for performance optimization, its position optimization poses a non-convex programming problem and brings great computational challenges. This letter contributes to building an efficient design algorithm by the block successive upper bound minimization and majorization-minimization principles, with each step admitting closed-form update for the ISAC waveform design. In addition, the extrapolation technique is exploited further to speed up the empirical convergence of FA position design. Simulation results show that the proposed design can achieve state-of-the-art sum-rate performance with at least 60% computation cutoff compared to existing works with successive convex approximation (SCA) and particle swarm optimization (PSO) algorithms.
- F. Liu, Y. -F. Liu, A. Li, C. Masouros, and Y. C. Eldar, “Cramér-Rao bound optimization for joint radar-communication beamforming,” IEEE Trans. Signal Process., vol. 70, pp. 240–253, Jan. 2022.
- F. Liu, C. Masouros, A. Li, H. Sun, and L. Hanzo, “MU-MIMO communications with MIMO radar: From co-existence to joint transmission,” IEEE Trans. Wireless Commun., vol. 17, no. 4, pp. 2755–2770, Apr. 2018.
- F. Liu, L. Zhou, C. Masouros, A. Li, W. Luo, and A. Petropulu, “Toward dual-functional radar-communication systems: Optimal waveform design,” IEEE Trans. Signal Process., vol. 66, no. 16, pp. 4264–4279, Aug. 2018.
- Z. Liao and F. Liu, “Symbol-level precoding for integrated sensing and communications: A faster-than-Nyquist approach,” IEEE Commun. Lett., vol. 27, no. 12, pp. 3210–3214, Dec. 2023.
- Y. Chen, F. Liu, Z. Liao, and F. Dong, “Symbol-level precoding for MIMO ISAC transmission based on interference exploitation,” IEEE Commun. Lett., vol. 28, no. 2, pp. 283–287, Feb. 2024.
- R. Liu, M. Li, and A. L. Swindlehurst, “Joint beamforming and reflection design for RIS-assisted ISAC systems,” in Proc. 30th Eur. Signal Process. Conf. (EUSIPCO). Belgrade, Serbia, 2022, pp. 997–1001.
- Z. Wang, Y. Liu, X. Mu, Z. Ding, and O. A. Dobre, “NOMA empowered integrated sensing and communication,” IEEE Commun. Lett., vol. 26, no. 3, pp. 677–681, Mar. 2022.
- Y. Dong, F. Liu, and Y. Xiong, “Joint receiver design for integrated sensing and communications,” IEEE Commun. Lett., vol. 27, no. 7, pp. 1854–1858, Jul. 2023.
- Q. Zhu, M. Li, R. Liu, and Q. Liu, “Joint transceiver beamforming and reflecting design for active RIS-aided ISAC systems,” IEEE Trans. Veh. Technol., vol. 72, no. 7, pp. 9636–9640, Jul. 2023.
- Z. Xu, F. Liu, and A. Petropulu, “Cramér-Rao bound and antenna selection optimization for dual radar-communication design,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP). Singapore, Singapore, 2022, pp. 5168–5172.
- X. Song, J. Xu, F. Liu, T. X. Han, and Y. C. Eldar, “Intelligent reflecting surface enabled sensing: Cramér-Rao bound optimization,” IEEE Trans. Signal Process., vol. 71, pp. 2011–2026, Jun. 2023.
- K. Shen and W. Yu, “Fractional programming for communication systems—Part I: Power control and beamforming,” IEEE Trans. Signal Process., vol. 66, no. 10, pp. 2616–2630, May 2018.
- K. -K. Wong, W. K. New, X. Hao, K. -F. Tong, and C. -B. Chae, “Fluid antenna system—Part I: Preliminaries,” IEEE Commun. Lett., vol. 27, no. 8, pp. 1919–1923, Aug. 2023.
- K. -K. Wong, K. -F. Tong, and C. -B. Chae, “Fluid antenna system—Part III: A new paradigm of distributed artificial scattering surfaces for massive connectivity,” IEEE Commun. Lett., vol. 27, no. 8, pp. 1929–1933, Aug. 2023.
- W. Ma, L. Zhu, and R. Zhang, “MIMO capacity characterization for movable antenna systems,” IEEE Trans. Wireless Commun., vol. 23, no. 4, pp. 3392–3407, Apr. 2024.
- Y. Ye, L. You, J. Wang, H. Xu, K. -K. Wong, and X. Gao, “Fluid antenna-assisted MIMO transmission exploiting statistical CSI,” IEEE Commun. Lett., vol. 28, no. 1, pp. 223–227, Jan. 2024.
- H. Qin, W. Chen, Z. Li, Q. Wu, N. Cheng, and F. Chen, “Antenna positioning and beamforming design for fluid antenna-assisted multi-user downlink communications,” IEEE Wireless Commun. Lett., vol. 13, no. 4, pp. 1073–1077, Apr. 2024.
- W. Ma, L. Zhu, and R. Zhang, “Multi-beam forming with movable-antenna array,” IEEE Commun. Lett., vol. 28, no. 3, pp. 697–701, Mar. 2024.
- Y. Zuo, J. Guo, B. Sheng, C. Dai, F. Xiao, and S. Jin, “Fluid antenna for mobile edge computing,” arXiv preprint arXiv:2403.11806, 2024.
- J. Zhu, G. Chen, P. Gao, P. Xiao, Z. Lin, and A. Quddus, “Index modulation for fluid antenna-assisted MIMO communications: System design and performance analysis,” IEEE Trans. Wireless Commun., 2024, Early Access.
- D. Zhang, S. Ye, M. Xiao, K. Wang, M. D. Renzo, and M. Skoglund, “Fluid antenna array enhanced over-the-air computation,” IEEE Wireless Commun. Lett., 2024, Early Access.
- C. Wang, G. Li, H. Zhang, K. -K. Wong, Z. Li, D. W. K. Ng, and C. -B. Chae, “Fluid antenna system liberating multiuser MIMO for ISAC via deep reinforcement learning,” IEEE Trans. Wireless Commun., 2024, Early Access.
- P. Stoica, J. Li, and Y. Xie, “On probing signal design for MIMO radar,” IEEE Trans. Signal Process., vol. 55, no. 8, pp. 4151–4161, Aug. 2007.
- Q. Shi, M. Razaviyayn, Z. -Q. Luo, and C. He, “An iteratively weighted MMSE approach to distributed sum-utility maximization for a MIMO interfering broadcast channel,” IEEE Trans. Signal Process., vol. 59, no. 9, pp. 4331–4340, Aug. 2011.
- S. Wang, Q. Li, S. X. Wu, and J. Lin, “Sum rate maximization for multiuser MISO downlink with intelligent reflecting surface,” arXiv preprint arXiv:1912.09315, 2019.
- M. Shao and W. -K. Ma, “A simple way to approximate average robust multiuser MISO transmit optimization under covariance-based CSIT,” in IEEE Int. Conf. Acoustics, Speech Signal Process. (ICASSP), 2017, pp. 3504–3508.
- K. L. Keys, H. Zhou, and K. Lange, “Proximal distance algorithms: Theory and practice,” J. Machine Learning Research, vol. 20, no. 1, pp. 2384–2421, 2019.
- Q. Zhang, M. Shao, Q. Li, and J. Liu, “An efficient algorithm for multiuser sum-rate maximization of large-scale active RIS-aided MIMO system,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP). Seoul, Korea, 2024, pp. 9036–9040.
- Q. Li, Y. Liu, M. Shao, and W. -K. Ma, “Proximal distance algorithm for nonconvex QCQP with beamforming applications,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP). Barcelona, Spain,, 2020, pp. 5155–5159.
- M. Shao, Q. Li, W. -K. Ma, and A. M. -C. So, “A framework for one-bit and constant-envelope precoding over multiuser massive MISO channels,” IEEE Trans. Signal Process., vol. 67, no. 20, pp. 5309–5324, Oct. 2019.
- M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex programming, version 2.1 beta,” 2014, [Online]. Available: http://cvxr.com/cvx.
- L. Zhu, W. Ma, and R. Zhang, “Modeling and performance analysis for movable antenna enabled wireless communications,” IEEE Trans. Wireless Commun., 2023, Early Access.