Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Automating TODO-missed Methods Detection and Patching (2405.06225v1)

Published 10 May 2024 in cs.SE

Abstract: TODO comments are widely used by developers to remind themselves or others about incomplete tasks. In other words, TODO comments are usually associated with temporary or suboptimal solutions. In practice, all the equivalent suboptimal implementations should be updated (e.g., adding TODOs) simultaneously. However, due to various reasons (e.g., time constraints or carelessness), developers may forget or even are unaware of adding TODO comments to all necessary places, which results in the TODO-missed methods. These "hidden" suboptimal implementations in TODO-missed methods may hurt the software quality and maintainability in the long-term. Therefore, in this paper, we propose the novel task of TODO-missed methods detection and patching, and develop a novel model, namely TDPatcher (TODO-comment Patcher), to automatically patch TODO comments to the TODO-missed methods in software projects. Our model has two main stages: offline learning and online inference. During the offline learning stage, TDPatcher employs GraphCodeBERT and contrastive learning for encoding the TODO comment (natural language) and its suboptimal implementation (code fragment) into vector representations. For the online inference stage, we can identify the TODO-missed methods and further determine their patching position by leveraging the offline trained model. We built our dataset by collecting TODO-introduced methods from the top-10,000 Python GitHub repositories and evaluated TDPatcher on them. Extensive experimental results show the promising performance of our model over a set of benchmarks. We further conduct an in-the-wild evaluation which successfully detects 26 \textit{\major{TODO-missed} methods} from 50 GitHub repositories.

Citations (1)

Summary

We haven't generated a summary for this paper yet.