Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Large Language Model-Aided Evolutionary Search for Constrained Multiobjective Optimization (2405.05767v1)

Published 9 May 2024 in cs.NE

Abstract: Evolutionary algorithms excel in solving complex optimization problems, especially those with multiple objectives. However, their stochastic nature can sometimes hinder rapid convergence to the global optima, particularly in scenarios involving constraints. In this study, we employ a LLM to enhance evolutionary search for solving constrained multi-objective optimization problems. Our aim is to speed up the convergence of the evolutionary population. To achieve this, we finetune the LLM through tailored prompt engineering, integrating information concerning both objective values and constraint violations of solutions. This process enables the LLM to grasp the relationship between well-performing and poorly performing solutions based on the provided input data. Solution's quality is assessed based on their constraint violations and objective-based performance. By leveraging the refined LLM, it can be used as a search operator to generate superior-quality solutions. Experimental evaluations across various test benchmarks illustrate that LLM-aided evolutionary search can significantly accelerate the population's convergence speed and stands out competitively against cutting-edge evolutionary algorithms.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Zeyi Wang (7 papers)
  2. Songbai Liu (5 papers)
  3. Jianyong Chen (11 papers)
  4. Kay Chen Tan (83 papers)
Citations (4)