Dynamics of McMillan mappings I. McMillan multipoles (2405.05652v2)
Abstract: In this article, we consider two dynamical systems: the McMillan sextupole and octupole integrable mappings, originally proposed by Edwin McMillan. Both represent the simplest symmetric McMillan maps, characterized by a single intrinsic parameter. While these systems find numerous applications across various domains of mathematics and physics, some of their dynamical properties remain unexplored. We aim to bridge this gap by providing a comprehensive description of all stable trajectories, including the parametrization of invariant curves, Poincar\'e rotation numbers, and canonical action-angle variables. In the second part, we establish connections between these maps and general chaotic maps in standard form. Our investigation reveals that the McMillan sextupole and octupole serve as first-order approximations of the dynamics around the fixed point, akin to the linear map and quadratic invariant (known as the Courant-Snyder invariant in accelerator physics), which represents zeroth-order approximations (referred to as linearization). Furthermore, we propose a novel formalism for nonlinear Twiss parameters, which accounts for the dependence of rotation number on amplitude. This stands in contrast to conventional betatron phase advance used in accelerator physics, which remains independent of amplitude. Notably, in the context of accelerator physics, this new formalism demonstrates its capability in predicting dynamical aperture around low-order resonances for flat beams, a critical aspect in beam injection/extraction scenarios.
- V. Alexeev, Bull. Inst. Theoret. Astron 10, 241 (1965).
- C. Marchal, Bulletin Astronomique 1, 189 (1966).
- C. Marchal, Celestial mechanics 38, 377 (1986).
- M. M. Jakas, Physical Review A 52, 866 (1995).
- M. M. Jakas, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 115, 255 (1996).
- M. P. Strand and W. P. Reinhardta), The Journal of Chemical Physics 70, 3812 (1979).
- Y. B. Suris, Functional Analysis and Its Applications 23, 74 (1989).
- A. Iatrou and J. A. Roberts, Nonlinearity 15, 459 (2002).
- M. Hénon and C. Heiles, The Astronomical Journal 69, 73 (1964).
- G. Duffing, Erzwungene Schwingungen bei veränderlicher Eigenfrequenz und ihre technische Bedeutung, 41-42 (Vieweg, 1918).
- T. Zolkin, S. Nagaitsev, and I. Morozov, “Mcmillan map and nonlinear twiss parameters,” (2022), arXiv:2204.12691 [nlin.SI] .
- M. Henon, Quarterly of applied mathematics 27, 291 (1969).
- B. V. Chirikov, Physics Reports 52, 263 (1979).
- S. Nagaitsev and T. Zolkin, Phys. Rev. Accel. Beams 23, 054001 (2020).
- A. N. Kolmogorov (1954) pp. 527–530.
- J. Moser, Matematika 6, 51 (1962).
- V. Arnol’d, Russian Mathematical Surveys 18, 9 (1963).
- R. DeVogelaere, H. ANTOSIEWICZ, W. T. KYNER, R. BASS, S. LEFSCHETZ, D. BUSHAW, L. MARKUS, R. DeVOGELAERE, P. MENDELSON, S. KAKUTANI, G. SEIFERT, and D. SLOTNICK, “On the structure of symmetric periodic solutions of conservative systems, with applications,” in Contributions to the Theory of Nonlinear Oscillations (AM-41), Volume IV (Princeton University Press, 1958) pp. 53–84.
- D. C. Lewis Jr, Pacific Journal of Mathematics 11, 1077 (1961).
- A. P. Veselov, Russian Mathematical Surveys 46, 1 (1991).
- M. Brown, Lecture notes in pure and applied mathematics , 83 (1993).
- S.-y. Lee, Accelerator Physics (Fourth Edition) (World Scientific Publishing Company, 2018).
- E. D. Courant and H. S. Snyder, Annals of physics 3, 1 (1958).
- L. Michelotti, Intermediate Classical Dynamics with Applications to Beam Physics (Wiley, 1995).
- J. Bengtsson, The sextupole scheme for the Swiss Light Source (SLS): an analytic approach, Tech. Rep. SLS-TME-TA-1997-0009 (Paul Scherrer Institut, 1997).
- I. Morozov and E. Levichev, CERN Proceedings 1, 195 (2017).
- P. Fatou, Comptes rendus de l’Académie des sciences, Paris 164, 806 (1917a).
- P. Fatou, Comptes rendus de l’Académie des sciences, Paris 165, 992 (1917b).
- G. Julia, Journal de Mathématiques Pures et Appliquées 8, 47 (1918).
- R. Brooks and J. P. Matelski, “The dynamics of 2-generator subgroups of psl(2,c),” in Riemann Surfaces And Related Topics: Proceedings of the 1978 Stony Brook Conference. (AM-97), Volume 97, edited by I. Kra and B. Maskit (Princeton University Press, Princeton, 1981) pp. 65–72.
- B. B. Mandelbrot, Annals of the New York Academy of Sciences 357, 249 (1980).
- D. Turaev, Nonlinearity 16, 123 (2002).
- H. Yoshida, Physics letters A 150, 262 (1990).