Complex network analysis of cryptocurrency market during crashes (2405.05642v1)
Abstract: This paper identifies the cryptocurrency market crashes and analyses its dynamics using the complex network. We identify three distinct crashes during 2017-20, and the analysis is carried out by dividing the time series into pre-crash, crash, and post-crash periods. Partial correlation based complex network analysis is carried out to study the crashes. Degree density ($\rho_D$), average path length ($\bar{l}$), and average clustering coefficient ($\overline{cc}$) are estimated from these networks. We find that both $\rho_D$ and $\overline{cc}$ are smallest during the pre-crash period, and spike during the crash suggesting the network is dense during a crash. Although $\rho_D$ and $\overline{cc}$ decrease in the post-crash period, they remain higher than pre-crash levels for the 2017-18 and 2018-19 crashes suggesting a market attempt to return to normalcy. We get $\bar{l}$ is minimal during the crash period, suggesting a rapid flow of information. A dense network and rapid information flow suggest that during a crash uninformed synchronized panic sell-off happens. However, during the 2019-20 crash, the values of $\rho_D$, $\overline{cc}$, and $\bar{l}$ did not vary significantly, indicating minimal change in dynamics compared to other crashes. The findings of this study may guide investors in making decisions during market crashes.