Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Denoising Diffusion Delensing Delight: Reconstructing the Non-Gaussian CMB Lensing Potential with Diffusion Models (2405.05598v2)

Published 9 May 2024 in astro-ph.CO

Abstract: Optimal extraction of cosmological information from observations of the Cosmic Microwave Background critically relies on our ability to accurately undo the distortions caused by weak gravitational lensing. In this work, we demonstrate the use of denoising diffusion models in performing Bayesian lensing reconstruction. We show that score-based generative models can produce accurate, uncorrelated samples from the CMB lensing convergence map posterior, given noisy CMB observations. To validate our approach, we compare the samples of our model to those obtained using established Hamiltonian Monte Carlo methods, which assume a Gaussian lensing potential. We then go beyond this assumption of Gaussianity, and train and validate our model on non-Gaussian lensing data, obtained by ray-tracing N-body simulations. We demonstrate that in this case, samples from our model have accurate non-Gaussian statistics beyond the power spectrum. The method provides an avenue towards more efficient and accurate lensing reconstruction, that does not rely on an approximate analytic description of the posterior probability. The reconstructed lensing maps can be used as an unbiased tracer of the matter distribution, and to improve delensing of the CMB, resulting in more precise cosmological parameter inference.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (41)
  1. S. Cole and G. Efstathiou, Monthly Notices of the Royal Astronomical Society 239, 195 (1989).
  2. E. V. Linder, Monthly Notices of the Royal Astronomical Society 243, 353 (1990).
  3. U. Seljak, Astrophys. J. 463, 1 (1996), arXiv:astro-ph/9505109 .
  4. R. B. Metcalf and J. Silk, Astrophys. J. 489, 1 (1997), arXiv:astro-ph/9708059 .
  5. A. Lewis and A. Challinor, Phys. Rept. 429, 1 (2006), arXiv:astro-ph/0601594 .
  6. U. Seljak and C. M. Hirata, Phys. Rev. D 69, 043005 (2004), arXiv:astro-ph/0310163 .
  7. D. Babich and M. Zaldarriaga, Phys. Rev. D 70, 083005 (2004), arXiv:astro-ph/0408455 .
  8. A. Achúcarro et al.,   (2022), arXiv:2203.08128 [astro-ph.CO] .
  9. J. Ange and J. Meyers, JCAP 10, 045 (2023), arXiv:2307.01662 [astro-ph.CO] .
  10. U. Seljak, Phys. Rev. Lett. 102, 021302 (2009), arXiv:0807.1770 [astro-ph] .
  11. M. Schmittfull and U. Seljak, Phys. Rev. D 97, 123540 (2018), arXiv:1710.09465 [astro-ph.CO] .
  12. M. Zaldarriaga and U. Seljak, Phys. Rev. D 59, 123507 (1999), arXiv:astro-ph/9810257 .
  13. W. Hu and T. Okamoto, Astrophys. J. 574, 566 (2002), arXiv:astro-ph/0111606 .
  14. T. Okamoto and W. Hu, Phys. Rev. D 67, 083002 (2003), arXiv:astro-ph/0301031 .
  15. S. Das et al., Phys. Rev. Lett. 107, 021301 (2011), arXiv:1103.2124 [astro-ph.CO] .
  16. A. van Engelen et al., Astrophys. J. 756, 142 (2012), arXiv:1202.0546 [astro-ph.CO] .
  17. P. A. R. Ade et al. (POLARBEAR), Phys. Rev. Lett. 113, 021301 (2014a), arXiv:1312.6646 [astro-ph.CO] .
  18. K. T. Story et al. (SPT), Astrophys. J. 810, 50 (2015), arXiv:1412.4760 [astro-ph.CO] .
  19. P. A. R. Ade et al. (Planck), Astron. Astrophys. 571, A17 (2014b), arXiv:1303.5077 [astro-ph.CO] .
  20. P. A. R. Ade et al. (Planck), Astron. Astrophys. 594, A15 (2016), arXiv:1502.01591 [astro-ph.CO] .
  21. B. A. Benson et al. (SPT-3G), Proc. SPIE Int. Soc. Opt. Eng. 9153, 91531P (2014), arXiv:1407.2973 [astro-ph.IM] .
  22. K. Prabhu et al. (SPT-3G),   (2024), arXiv:2403.17925 [astro-ph.CO] .
  23. P. Ade et al. (Simons Observatory), JCAP 02, 056 (2019), arXiv:1808.07445 [astro-ph.CO] .
  24. K. N. Abazajian et al. (CMB-S4),   (2016), arXiv:1610.02743 [astro-ph.CO] .
  25. C. M. Hirata and U. Seljak, Phys. Rev. D 67, 043001 (2003a), arXiv:astro-ph/0209489 .
  26. C. M. Hirata and U. Seljak, Phys. Rev. D 68, 083002 (2003b), arXiv:astro-ph/0306354 .
  27. J. Carron and A. Lewis, Phys. Rev. D 96, 063510 (2017), arXiv:1704.08230 [astro-ph.CO] .
  28. E. Guzman and J. Meyers, Phys. Rev. D 104, 043529 (2021), arXiv:2101.01214 [astro-ph.CO] .
  29. M. Millea et al., Astrophys. J. 922, 259 (2021), arXiv:2012.01709 [astro-ph.CO] .
  30. M. Millea, “Improved marginal unbiased score expansion (muse) via implicit differentiation,”  (2022), arXiv:2209.10512 [stat.ML] .
  31. M. Millea and U. Seljak, Phys. Rev. D 105, 103531 (2022), arXiv:2112.09354 [astro-ph.CO] .
  32. J. Ho, A. Jain,  and P. Abbeel, “Denoising diffusion probabilistic models,”  (2020), arXiv:2006.11239 [cs.LG] .
  33. A. Challinor and G. Chon, Phys. Rev. D 66, 127301 (2002), arXiv:astro-ph/0301064 .
  34. https://github.com/marius311/CMBLensing.jl.
  35. B. D. Anderson, Stochastic Processes and their Applications 12, 313 (1982).
  36. G. Batzolis, J. Stanczuk, C.-B. Schönlieb,  and C. Etmann, “Conditional image generation with score-based diffusion models,”  (2021), arXiv:2111.13606 [cs.LG] .
  37. T. Namikawa, Phys. Rev. D 93, 121301 (2016), arXiv:1604.08578 [astro-ph.CO] .
  38. N. MacCrann et al. (ACT),   (2023), arXiv:2304.05196 [astro-ph.CO] .
  39. G. Pratten and A. Lewis, JCAP 08, 047 (2016), arXiv:1605.05662 [astro-ph.CO] .
  40. M. Robertson and A. Lewis, JCAP 08, 048 (2023), arXiv:2303.13313 [astro-ph.CO] .
  41. J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula, A. Paszke, J. VanderPlas, S. Wanderman-Milne,  and Q. Zhang, “JAX: composable transformations of Python+NumPy programs,”  (2018).

Summary

We haven't generated a summary for this paper yet.