Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Insensitive edge solitons in a non-Hermitian topological lattice (2405.05441v2)

Published 8 May 2024 in nlin.PS

Abstract: In this work, we demonstrate that the synergetic interplay of topology, nonreciprocity and nonlinearity is capable of unprecedented effects. We focus on a nonreciprocal variant of the Su-Shrieffer-Heeger chain with local Kerr nonlinearity. We find a continuous family of non-reciprocal edge solitons (NES) emerging from the topological edge mode, with near-zero energy, in great contrast from their reciprocal counterparts. Analytical results show that this energy decays exponentially towards zero when increasing the lattice size. Consequently, despite the absence of chiral and sublattice symmetries within the system, we obtain zero-energy NES, which are insensitive to growing Kerr nonlinearity. Even more surprising, these zero-energy NES also persist in the strong nonlinear limit. Our work may enable new avenues for the control of nonlinear topological waves without requiring the addition of complex chiral- or sublattice-preserving nonlinearities.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. M. Z. Hasan and C. L. Kane, Colloquium: Topological insulators, Rev. Mod. Phys. 82, 3045 (2010).
  2. G. Ma, M. Xiao, and C. T. Chan, Topological phases in acoustic and mechanical systems, Nat. Rev. Phys. 1, 281 (2019).
  3. M. Segev and M. A. Bandres, Topological photonics: Where do we go from here?, Nanophotonics 10, 425 (2021).
  4. A. Szameit and M. C. Rechtsman, Discrete nonlinear topological photonics, Nature Physics , 1 (2024).
  5. J. Dong, V. Juričić, and B. Roy, Topolectric circuits: Theory and construction, Phys. Rev. Res. 3, 023056 (2021).
  6. S. Zheng, G. Duan, and B. Xia, Progress in topological mechanics, Applied Sciences 12, 10.3390/app12041987 (2022).
  7. H. Meng, Y. S. Ang, and C. H. Lee, Exceptional points in non-Hermitian systems: Applications and recent developments, Applied Physics Letters 124, 060502 (2024).
  8. W. Wang, X. Wang, and G. Ma, Non-Hermitian morphing of topological modes, Nature 608, 50 (2022).
  9. P. Gao, M. Willatzen, and J. Christensen, Anomalous topological edge states in non-Hermitian piezophononic media, Phys. Rev. Lett. 125, 206402 (2020).
  10. C. Yuce, Nonlinear non-Hermitian skin effect, Physics Letters A 408, 127484 (2021).
  11. M. Ezawa, Dynamical nonlinear higher-order non-Hermitian skin effects and topological trap-skin phase, Physical Review B 105, 125421 (2022).
  12. H. Li and S. Wan, Dynamic skin effects in non-Hermitian systems, Phys. Rev. B 106, L241112 (2022).
  13. S. Jana and L. Sirota, Tunneling-like wave transmission in non-Hermitian lattices with mirrored nonreciprocity, arXiv preprint arXiv:2312.16182  (2023).
  14. M. J. Ablowitz, C. W. Curtis, and Y.-P. Ma, Linear and nonlinear traveling edge waves in optical honeycomb lattices, Phys. Rev. A 90, 023813 (2014).
  15. Y. Hadad, A. B. Khanikaev, and A. Alù, Self-induced topological transitions and edge states supported by nonlinear staggered potentials, Phys. Rev. B 93, 155112 (2016).
  16. D. Leykam and Y. D. Chong, Edge solitons in nonlinear-photonic topological insulators, Physical Review Letters 117, 143901 (2016).
  17. R. Chaunsali and G. Theocharis, Self-induced topological transition in phononic crystals by nonlinearity management, Phys. Rev. B 100, 014302 (2019).
  18. Y.-P. Ma and H. Susanto, Topological edge solitons and their stability in a nonlinear Su-Schrieffer-Heeger model, Phys. Rev. E 104, 054206 (2021).
  19. L. Jezequel and P. Delplace, Nonlinear edge modes from topological one-dimensional lattices, Phys. Rev. B 105, 035410 (2022).
  20. J. C. Budich and E. J. Bergholtz, Non-Hermitian topological sensors, Phys. Rev. Lett. 125, 180403 (2020).
  21. W. P. Su, J. R. Schrieffer, and A. J. Heeger, Solitons in polyacetylene, Phys. Rev. Lett. 42, 1698 (1979).
  22. See Supplemental Material at http://link.journal.domain/supplemental/doi, for additional information which includes Refs.[cite].
  23. It follows that in the rest of this paper we use the biorthogonality relation: v→kT⁢u→k′=δk⁢k′superscriptsubscript→𝑣𝑘𝑇subscript→𝑢superscript𝑘′subscript𝛿𝑘superscript𝑘′\vec{v}_{k}^{T}\vec{u}_{k^{\prime}}=\delta_{kk^{\prime}}over→ start_ARG italic_v end_ARG start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT over→ start_ARG italic_u end_ARG start_POSTSUBSCRIPT italic_k start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT = italic_δ start_POSTSUBSCRIPT italic_k italic_k start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT.
  24. The energies El−<x<El+subscript𝐸limit-from𝑙𝑥subscript𝐸limit-from𝑙E_{l-}<x<E_{l+}italic_E start_POSTSUBSCRIPT italic_l - end_POSTSUBSCRIPT < italic_x < italic_E start_POSTSUBSCRIPT italic_l + end_POSTSUBSCRIPT are rescaled as y=(x−El−)⁢(Em+−Em−)/(El+−El−)+Em,−𝑦𝑥subscript𝐸limit-from𝑙subscript𝐸limit-from𝑚subscript𝐸limit-from𝑚subscript𝐸limit-from𝑙subscript𝐸limit-from𝑙subscript𝐸𝑚y=(x-E_{l-})(E_{m+}-E_{m-})/(E_{l+}-E_{l-})+E_{m,-}italic_y = ( italic_x - italic_E start_POSTSUBSCRIPT italic_l - end_POSTSUBSCRIPT ) ( italic_E start_POSTSUBSCRIPT italic_m + end_POSTSUBSCRIPT - italic_E start_POSTSUBSCRIPT italic_m - end_POSTSUBSCRIPT ) / ( italic_E start_POSTSUBSCRIPT italic_l + end_POSTSUBSCRIPT - italic_E start_POSTSUBSCRIPT italic_l - end_POSTSUBSCRIPT ) + italic_E start_POSTSUBSCRIPT italic_m , - end_POSTSUBSCRIPT. It follows that Em−<y<Em+subscript𝐸limit-from𝑚𝑦subscript𝐸limit-from𝑚E_{m-}<y<E_{m+}italic_E start_POSTSUBSCRIPT italic_m - end_POSTSUBSCRIPT < italic_y < italic_E start_POSTSUBSCRIPT italic_m + end_POSTSUBSCRIPT. We apply this process each time we want two sets of parameters of the system to have the same width of the energy band gap.
  25. E. Doedel, H. B. Keller, and J. P. Kernevez, Numerical analysis and control of bifurcation problems (I): Bifurcation in finite dimensions, International Journal of Bifurcation and Chaos 01, 493 (1991).
  26. Openly accessible at: https://sourceforge.net/projects/matcont/files/.
  27. J. Wiersig, Petermann factors and phase rigidities near exceptional points, Phys. Rev. Res. 5, 033042 (2023).
  28. D. Pelinovsky, P. Kevrekidis, and D. Frantzeskakis, Stability of discrete solitons in nonlinear Schrödinger lattices, Physica D: Nonlinear Phenomena 212, 1 (2005).
  29. S. Aubry, Breathers in nonlinear lattices: Existence, linear stability and quantization, Physica D: Nonlinear Phenomena 103, 201 (1997).
  30. S. Flach and A. V. Gorbach, Discrete breathers — Advances in theory and applications, Physics Reports 467, 1 (2008).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com