Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Certifying Euclidean Sections and Finding Planted Sparse Vectors Beyond the $\sqrt{n}$ Dimension Threshold (2405.05373v1)

Published 8 May 2024 in cs.DS, cs.CC, and math.MG

Abstract: We consider the task of certifying that a random $d$-dimensional subspace $X$ in $\mathbb{R}n$ is well-spread - every vector $x \in X$ satisfies $c\sqrt{n} |x|_2 \leq |x|_1 \leq \sqrt{n}|x|_2$. In a seminal work, Barak et. al. showed a polynomial-time certification algorithm when $d \leq O(\sqrt{n})$. On the other hand, when $d \gg \sqrt{n}$, the certification task is information-theoretically possible but there is evidence that it is computationally hard [MW21,Cd22], a phenomenon known as the information-computation gap. In this paper, we give subexponential-time certification algorithms in the $d \gg \sqrt{n}$ regime. Our algorithm runs in time $\exp(\widetilde{O}(n{\varepsilon}))$ when $d \leq \widetilde{O}(n{(1+\varepsilon)/2})$, establishing a smooth trade-off between runtime and the dimension. Our techniques naturally extend to the related planted problem, where the task is to recover a sparse vector planted in a random subspace. Our algorithm achieves the same runtime and dimension trade-off for this task.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com