Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning to Play Pursuit-Evasion with Dynamic and Sensor Constraints (2405.05372v1)

Published 8 May 2024 in cs.RO

Abstract: We present a multi-agent reinforcement learning approach to solve a pursuit-evasion game between two players with car-like dynamics and sensing limitations. We develop a curriculum for an existing multi-agent deterministic policy gradient algorithm to simultaneously obtain strategies for both players, and deploy the learned strategies on real robots moving as fast as 2 m/s in indoor environments. Through experiments we show that the learned strategies improve over existing baselines by up to 30% in terms of capture rate for the pursuer. The learned evader model has up to 5% better escape rate over the baselines even against our competitive pursuer model. We also present experiment results which show how the pursuit-evasion game and its results evolve as the player dynamics and sensor constraints are varied. Finally, we deploy learned policies on physical robots for a game between the F1TENTH and JetRacer platforms and show that the learned strategies can be executed on real-robots. Our code and supplementary material including videos from experiments are available at https: //gonultasbu.github.io/pursuit-evasion/.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (38)
  1. L. J. Guibas, J.-C. Latombe, S. M. LaValle, D. Lin, and R. Motwani, “A visibility-based pursuit-evasion problem,” International Journal of Computational Geometry & Applications, vol. 9, no. 04n05, pp. 471–493, 1999.
  2. V. Isler, S. Kannan, and S. Khanna, “Randomized pursuit-evasion in a polygonal environment,” IEEE Transactions on Robotics, vol. 21, no. 5, pp. 875–884, 2005.
  3. R. Lowe, Y. I. Wu, A. Tamar, J. Harb, O. Pieter Abbeel, and I. Mordatch, “Multi-agent actor-critic for mixed cooperative-competitive environments,” Advances in neural information processing systems, vol. 30, 2017.
  4. M. O’Kelly, H. Zheng, D. Karthik, and R. Mangharam, “F1tenth: An open-source evaluation environment for continuous control and reinforcement learning,” Proceedings of Machine Learning Research, vol. 123, 2020.
  5. NVIDIA-AI-IOT, “jetracer.” [Online]. Available: https://github.com/NVIDIA-AI-IOT/jetracer
  6. T. H. Chung, G. A. Hollinger, and V. Isler, “Search and pursuit-evasion in mobile robotics: A survey,” Autonomous robots, vol. 31, pp. 299–316, 2011.
  7. I. Exarchos, P. Tsiotras, and M. Pachter, “On the suicidal pedestrian differential game,” Dynamic Games and Applications, vol. 5, pp. 297–317, 2015.
  8. U. Ruiz and R. Murrieta-Cid, “A differential pursuit/evasion game of capture between an omnidirectional agent and a differential drive robot, and their winning roles,” International Journal of Control, vol. 89, no. 11, pp. 2169–2184, 2016.
  9. W. L. Scott and N. E. Leonard, “Optimal evasive strategies for multiple interacting agents with motion constraints,” Automatica, vol. 94, pp. 26–34, 2018.
  10. C. De Souza, R. Newbury, A. Cosgun, P. Castillo, B. Vidolov, and D. Kulić, “Decentralized multi-agent pursuit using deep reinforcement learning,” IEEE Robotics and Automation Letters, vol. 6, no. 3, pp. 4552–4559, 2021.
  11. H. Yang, P. Ge, J. Cao, Y. Yang, and Y. Liu, “Large scale pursuit-evasion under collision avoidance using deep reinforcement learning,” in 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2023, pp. 2232–2239.
  12. I. Suzuki and M. Yamashita, “Searching for a mobile intruder in a polygonal region,” SIAM Journal on computing, vol. 21, no. 5, pp. 863–888, 1992.
  13. B. P. Gerkey, S. Thrun, and G. Gordon, “Visibility-based pursuit-evasion with limited field of view,” The International Journal of Robotics Research, vol. 25, no. 4, pp. 299–315, 2006.
  14. N. M. Stiffler, A. Kolling, and J. M. O’Kane, “Persistent pursuit-evasion: The case of the preoccupied pursuer,” in 2017 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2017, pp. 5027–5034.
  15. D. Shishika and V. Kumar, “Local-game decomposition for multiplayer perimeter-defense problem,” in 2018 IEEE conference on decision and control (CDC).   IEEE, 2018, pp. 2093–2100.
  16. N. Noori and V. Isler, “The lion and man game on polyhedral surfaces with boundary,” in 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.   IEEE, 2014, pp. 1769–1774.
  17. S. Engin, Q. Jiang, and V. Isler, “Learning to play pursuit-evasion with visibility constraints,” in 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2021, pp. 3858–3863.
  18. A. Bajcsy, A. Loquercio, A. Kumar, and J. Malik, “Learning vision-based pursuit-evasion robot policies,” arXiv preprint arXiv:2308.16185, 2023.
  19. L. S. Shapley, “Stochastic games,” Proceedings of the national academy of sciences, vol. 39, no. 10, pp. 1095–1100, 1953.
  20. M. L. Littman, “Markov games as a framework for multi-agent reinforcement learning,” in Machine learning proceedings 1994.   Elsevier, 1994, pp. 157–163.
  21. I. M. Mitchell, A. M. Bayen, and C. J. Tomlin, “A time-dependent hamilton-jacobi formulation of reachable sets for continuous dynamic games,” IEEE Transactions on automatic control, vol. 50, no. 7, pp. 947–957, 2005.
  22. K. Zhang, Z. Yang, and T. Başar, “Multi-agent reinforcement learning: A selective overview of theories and algorithms,” Handbook of reinforcement learning and control, pp. 321–384, 2021.
  23. L. Pinto, J. Davidson, R. Sukthankar, and A. Gupta, “Robust adversarial reinforcement learning,” in International Conference on Machine Learning.   PMLR, 2017, pp. 2817–2826.
  24. L. Buşoniu, R. Babuška, and B. De Schutter, “Multi-agent reinforcement learning: An overview,” Innovations in multi-agent systems and applications-1, pp. 183–221, 2010.
  25. J. Ackermann, V. Gabler, T. Osa, and M. Sugiyama, “Reducing overestimation bias in multi-agent domains using double centralized critics,” arXiv preprint arXiv:1910.01465, 2019.
  26. C. S. de Witt, T. Gupta, D. Makoviichuk, V. Makoviychuk, P. H. Torr, M. Sun, and S. Whiteson, “Is independent learning all you need in the starcraft multi-agent challenge?” arXiv preprint arXiv:2011.09533, 2020.
  27. T. Rashid, M. Samvelyan, C. S. De Witt, G. Farquhar, J. Foerster, and S. Whiteson, “Monotonic value function factorisation for deep multi-agent reinforcement learning,” The Journal of Machine Learning Research, vol. 21, no. 1, pp. 7234–7284, 2020.
  28. O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, J. Chung, D. H. Choi, R. Powell, T. Ewalds, P. Georgiev, et al., “Grandmaster level in starcraft ii using multi-agent reinforcement learning,” Nature, vol. 575, no. 7782, pp. 350–354, 2019.
  29. C. Berner, G. Brockman, B. Chan, V. Cheung, P. Debiak, C. Dennison, D. Farhi, Q. Fischer, S. Hashme, C. Hesse, et al., “Dota 2 with large scale deep reinforcement learning,” arXiv preprint arXiv:1912.06680, 2019.
  30. D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, et al., “A general reinforcement learning algorithm that masters chess, shogi, and go through self-play,” Science, vol. 362, no. 6419, pp. 1140–1144, 2018.
  31. D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al., “Mastering the game of go with deep neural networks and tree search,” nature, vol. 529, no. 7587, pp. 484–489, 2016.
  32. A. Brunnbauer, L. Berducci, A. Brandstátter, M. Lechner, R. Hasani, D. Rus, and R. Grosu, “Latent imagination facilitates zero-shot transfer in autonomous racing,” in 2022 international conference on robotics and automation (ICRA).   IEEE, 2022, pp. 7513–7520.
  33. M. Althoff, M. Koschi, and S. Manzinger, “Commonroad: Composable benchmarks for motion planning on roads,” in 2017 IEEE Intelligent Vehicles Symposium (IV).   IEEE, 2017, pp. 719–726.
  34. J. Terry, B. Black, N. Grammel, M. Jayakumar, A. Hari, R. Sullivan, L. S. Santos, C. Dieffendahl, C. Horsch, R. Perez-Vicente, et al., “Pettingzoo: Gym for multi-agent reinforcement learning,” Advances in Neural Information Processing Systems, vol. 34, pp. 15 032–15 043, 2021.
  35. A. Quattrini Li, R. Fioratto, F. Amigoni, and V. Isler, “A search-based approach to solve pursuit-evasion games with limited visibility in polygonal environments,” in Proceedings of the 17th International Conference on Autonomous Agents and MultiAgent Systems, 2018, pp. 1693–1701.
  36. N. Ustaran-Anderegg and M. Pratt, “AgileRL.” [Online]. Available: https://github.com/AgileRL/AgileRL
  37. B. M. Gonultas, P. Mukherjee, O. G. Poyrazoglu, and V. Isler, “System identification and control of front-steered ackermann vehicles through differentiable physics,” in 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2023, pp. 4347–4353.
  38. S. Macenski, T. Foote, B. Gerkey, C. Lalancette, and W. Woodall, “Robot operating system 2: Design, architecture, and uses in the wild,” Science Robotics, vol. 7, no. 66, p. eabm6074, 2022. [Online]. Available: https://www.science.org/doi/abs/10.1126/scirobotics.abm6074

Summary

We haven't generated a summary for this paper yet.