Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Transcendence for Pisot Morphic Words over an Algebraic Base (2405.05279v2)

Published 6 May 2024 in math.NT and cs.FL

Abstract: It is known that for a uniform morphic sequence $\boldsymbol u = \langle u_n\rangle_{n=0}\infty$ and an algebraic number $\beta$ such that $|\beta|>1$, the number $[![\boldsymbol{u} ]!]\beta:=\sum{n=0}\infty \frac{u_n}{\betan}$ either lies in $\mathbb Q(\beta)$ or is transcendental. In this paper we show a similar rational-transcendental dichotomy for sequences defined by irreducible Pisot morphisms. Subject to the Pisot conjecture (an irreducible Pisot morphism has pure discrete spectrum), we generalise the latter result to arbitrary finite alphabets. In certain cases we are able to show transcendence of $[![\boldsymbol{u}]!]{\beta}$ outright. In particular, for $k\geq 2$, if $\boldsymbol u$ is the $k$-bonacci word then $[![\boldsymbol{u}]!]{\beta}$ is transcendental.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. B. Adamczewski and Y. Bugeaud. On the complexity of algebraic numbers i. expansions in integer bases. Annals of Mathematics, 165:547–565, 2005.
  2. B. Adamczewski and Y. Bugeaud. Dynamics for β𝛽\betaitalic_β-shifts and diophantine approximation. Ergodic Theory and Dynamical Systems, 27:1695 – 1711, 2007.
  3. Sur la complexité des nombres algébriques. Comptes Rendus Mathematique, 339:11–14, 2004.
  4. On the computational complexity of algebraic numbers: the hartmanis–stearns problem revisited. Transactions of the American Mathematical Society, 373(5):3085–3115, 2020.
  5. B. Adamczewski and C. Faverjon. Mahler’s method in several variables and finite automata. arXiv preprint arXiv:2012.08283, 2020.
  6. Interactions between dynamics, arithmetics and combinatorics: The good, the bad, and the ugly. Algebraic and Topological Dynamics, 385, 2005.
  7. J. Borwein and P. B. Borwein. On the complexity of familiar functions and numbers. SIAM Review, 30(4):589–601, 1988.
  8. On the diophantine nature of the elements of cantor sets arising in the dynamics of contracted rotations. Annali Scuola Normale Superiore di Pisa - Classe Di Scienze, XXII:1681–1704, 2021.
  9. A. Cobham. Uniform tag seqences. Math. Syst. Theory, 6(3):164–192, 1972.
  10. L. V. Danilov. Some classes of transcendental numbers. Mathematical notes of the Academy of Sciences of the USSR, 12(2):524–527, 1972.
  11. S. Ferenczi and C. Mauduit. Transcendence of numbers with a low complexity expansion. Journal of Number Theory, 67(2):146–161, 1997.
  12. An Introduction to the Theory of Numbers. Oxford University Press, fifth edition, 1978.
  13. P. Kebis. Transcendence of numbers related to Episturmian words. PhD thesis, University of Oxford, 2023.
  14. M. Laurent and A. Nogueira. Rotation number of contracted rotations. Journal of Modern Dynamics, 12:175–191, 2018.
  15. Hendrik W Lenstra Jr. Finding small degree factors of lacunary polynomials. Number theory in progress, 1:267–276, 1999.
  16. A. N. Livshits. On the spectra of adic transformations of markov compacta. Russian Mathematical Surveys, 42(3):222, 1987.
  17. J. H. Loxton and A. J. Van der Poorten. Arithmetic properties of certain functions in several variables iii. Bulletin of the Australian Mathematical Society, 16(1):15–47, 1977.
  18. On the transcendence of a series related to sturmian words, 2022. To appear in Annali della Scuola Normale Superiore di Pisa. arXiv:2204.08268.
  19. K. Mahler. Some suggestions for further research. Bulletin of the Australian Mathematical Society, 29:101 – 108, 1984.
  20. M. Morse and G. A. Hedlund. Symbolic dynamics: Sturmian trajectories. American Journal of Mathematics, 60:815–866, 1938.
  21. M. Morse and G. A. Hedlund. Symbolic dynamics ii: Sturmian trajectories. American Journal of Mathematics, 62:1–42, 1940.
  22. M. Queffélec. Substitution dynamical systems-spectral analysis, volume 1294. Springer, 2010.
  23. G. Rauzy. Nombres algébriques et substitutions. Bulletin de la Société Mathématique de France, 110:147–178, 1982.
  24. R. Risley and L. Zamboni. A generalization of sturmian sequences: Combinatorial structure and transcendence. Acta Arithmetica, 95, 01 2000.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com