Unique continuation at the boundary for divergence form elliptic equations on quasiconvex domains (2405.05044v3)
Abstract: Let $\Omega \subset \mathbb{R}d$ be a quasiconvex Lipschitz domain and $A(x)$ be a $d \times d$ uniformly elliptic, symmetric matrix with Lipschitz coefficients. Assume a nontrivial $u$ solves $-\nabla \cdot (A(x) \nabla u) = 0$ in $\Omega$, and $u$ vanishes on $\Sigma = \partial \Omega \cap B$ for some ball $B$. The main contribution of this paper is to demonstrate the existence of a countable collection of open balls $(B_i)_i$ such that the restriction of $u$ to $B_i \cap \Omega$ maintains a consistent sign. Furthermore, for any compact subset $K$ of $\Sigma$, the set difference $K \setminus \bigcup_i B_i$ is shown to possess a Minkowski dimension that is strictly less than $d - 1 - \epsilon$. As a consequence, we prove Lin's conjecture in quasiconvex domains.
- V. Adolfsson and L. Escauriaza. C1,αsuperscript𝐶1𝛼C^{1,\alpha}italic_C start_POSTSUPERSCRIPT 1 , italic_α end_POSTSUPERSCRIPT domains and unique continuation at the boundary. Comm. Pure Appl. Math., 50(10):935–969, 1997.
- Convex domains and unique continuation at the boundary. Rev. Mat. Iberoamericana, 11(3):513–525, 1995.
- J. Bourgain and T. Wolff. A remark on gradients of harmonic functions in dimension ≥3absent3\geq 3≥ 3. Colloq. Math., 60/61(1):253–260, 1990.
- B. E. Dahlberg. Estimates of harmonic measure. Archive for Rational Mechanics and Analysis, 65:275–288, 1977.
- The theory of weights and the dirichlet problem for elliptic equations. Annals of Mathematics, 134(1):65–124, 1991.
- J. M. Gallegos. Size of the zero set of solutions of elliptic PDEs near the boundary of Lipschitz domains with small Lipschitz constant. Calc. Var. Partial Differential Equations, 62(4):Paper No. 113, 52, 2023.
- N. Garofalo and F.-H. Lin. Monotonicity properties of variational integrals, a p weights and unique continuation. Indiana University Mathematics Journal, 35(2):245–268, 1986.
- Global regularity for divergence form elliptic equations on quasiconvex domains. J. Differential Equations, 249(12):3132–3147, 2010.
- F. J. A. Jr. Dirichlet’s problem for multiple valued functions and the regularity of mass minimizing integral currents. In Minimal submanifolds and geodesics (Proc. Japan-United States Sem., Tokyo, 1977), volume 1, 1979.
- C. Kenig. Harmonic analysis techniques for second order elliptic boundary value problems, volume 83 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1994.
- C. Kenig and Z. Shen. Layer potential methods for elliptic homogenization problems. Comm. Pure Appl. Math., 64(1):1–44, 2011.
- C. Kenig and Z. Zhao. Examples of non-Dini domains with large singular sets. arXiv:2212.01541, 2022.
- I. Kukavica and K. Nyström. Unique continuation on the boundary for Dini domains. Proc. Amer. Math. Soc., 126(2):441–446, 1998.
- F.-H. Lin. Nodal sets of solutions of elliptic and parabolic equations. Comm. Pure Appl. Math., 44(3):287–308, 1991.
- A. Logunov. Nodal sets of Laplace eigenfunctions: polynomial upper estimates of the Hausdorff measure. Ann. of Math. (2), 187(1):221–239, 2018.
- A. Logunov. Nodal sets of Laplace eigenfunctions: proof of Nadirashvili’s conjecture and of the lower bound in Yau’s conjecture. Ann. of Math. (2), 187(1):241–262, 2018.
- A. Logunov and E. Malinnikova. Nodal sets of laplace eigenfunctions: estimates of the hausdorff measure in dimensions two and three. In 50 Years with Hardy Spaces: A Tribute to Victor Havin, pages 333–344. Springer International Publishing, Cham, 2018.
- The sharp upper bound for the area of the nodal sets of Dirichlet Laplace eigenfunctions. Geom. Funct. Anal., 31(5):1219–1244, 2021.
- P. Mattila. Geometry of Sets and Measures in Euclidean Spaces: Fractals and Rectifiability, volume 44 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1995.
- S. McCurdy. Unique continuation on convex domains. Rev. Mat. Iberoam., 39(1):1–28, 2023.
- X. Tolsa. Unique continuation at the boundary for harmonic functions in C1superscript𝐶1C^{1}italic_C start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT domains and Lipschitz domains with small constant. Comm. Pure Appl. Math., 76(2):305–336, 2023.
- J. Zhu and J. Zhuge. Nodal sets of Dirichlet eigenfunctions in quasiconvex Lipschitz domains. arXiv:2303.02046, 2023.