Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unique continuation at the boundary for divergence form elliptic equations on quasiconvex domains (2405.05044v3)

Published 8 May 2024 in math.AP

Abstract: Let $\Omega \subset \mathbb{R}d$ be a quasiconvex Lipschitz domain and $A(x)$ be a $d \times d$ uniformly elliptic, symmetric matrix with Lipschitz coefficients. Assume a nontrivial $u$ solves $-\nabla \cdot (A(x) \nabla u) = 0$ in $\Omega$, and $u$ vanishes on $\Sigma = \partial \Omega \cap B$ for some ball $B$. The main contribution of this paper is to demonstrate the existence of a countable collection of open balls $(B_i)_i$ such that the restriction of $u$ to $B_i \cap \Omega$ maintains a consistent sign. Furthermore, for any compact subset $K$ of $\Sigma$, the set difference $K \setminus \bigcup_i B_i$ is shown to possess a Minkowski dimension that is strictly less than $d - 1 - \epsilon$. As a consequence, we prove Lin's conjecture in quasiconvex domains.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. V. Adolfsson and L. Escauriaza. C1,αsuperscript𝐶1𝛼C^{1,\alpha}italic_C start_POSTSUPERSCRIPT 1 , italic_α end_POSTSUPERSCRIPT domains and unique continuation at the boundary. Comm. Pure Appl. Math., 50(10):935–969, 1997.
  2. Convex domains and unique continuation at the boundary. Rev. Mat. Iberoamericana, 11(3):513–525, 1995.
  3. J. Bourgain and T. Wolff. A remark on gradients of harmonic functions in dimension ≥3absent3\geq 3≥ 3. Colloq. Math., 60/61(1):253–260, 1990.
  4. B. E. Dahlberg. Estimates of harmonic measure. Archive for Rational Mechanics and Analysis, 65:275–288, 1977.
  5. The theory of weights and the dirichlet problem for elliptic equations. Annals of Mathematics, 134(1):65–124, 1991.
  6. J. M. Gallegos. Size of the zero set of solutions of elliptic PDEs near the boundary of Lipschitz domains with small Lipschitz constant. Calc. Var. Partial Differential Equations, 62(4):Paper No. 113, 52, 2023.
  7. N. Garofalo and F.-H. Lin. Monotonicity properties of variational integrals, a p weights and unique continuation. Indiana University Mathematics Journal, 35(2):245–268, 1986.
  8. Global regularity for divergence form elliptic equations on quasiconvex domains. J. Differential Equations, 249(12):3132–3147, 2010.
  9. F. J. A. Jr. Dirichlet’s problem for multiple valued functions and the regularity of mass minimizing integral currents. In Minimal submanifolds and geodesics (Proc. Japan-United States Sem., Tokyo, 1977), volume 1, 1979.
  10. C. Kenig. Harmonic analysis techniques for second order elliptic boundary value problems, volume 83 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1994.
  11. C. Kenig and Z. Shen. Layer potential methods for elliptic homogenization problems. Comm. Pure Appl. Math., 64(1):1–44, 2011.
  12. C. Kenig and Z. Zhao. Examples of non-Dini domains with large singular sets. arXiv:2212.01541, 2022.
  13. I. Kukavica and K. Nyström. Unique continuation on the boundary for Dini domains. Proc. Amer. Math. Soc., 126(2):441–446, 1998.
  14. F.-H. Lin. Nodal sets of solutions of elliptic and parabolic equations. Comm. Pure Appl. Math., 44(3):287–308, 1991.
  15. A. Logunov. Nodal sets of Laplace eigenfunctions: polynomial upper estimates of the Hausdorff measure. Ann. of Math. (2), 187(1):221–239, 2018.
  16. A. Logunov. Nodal sets of Laplace eigenfunctions: proof of Nadirashvili’s conjecture and of the lower bound in Yau’s conjecture. Ann. of Math. (2), 187(1):241–262, 2018.
  17. A. Logunov and E. Malinnikova. Nodal sets of laplace eigenfunctions: estimates of the hausdorff measure in dimensions two and three. In 50 Years with Hardy Spaces: A Tribute to Victor Havin, pages 333–344. Springer International Publishing, Cham, 2018.
  18. The sharp upper bound for the area of the nodal sets of Dirichlet Laplace eigenfunctions. Geom. Funct. Anal., 31(5):1219–1244, 2021.
  19. P. Mattila. Geometry of Sets and Measures in Euclidean Spaces: Fractals and Rectifiability, volume 44 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1995.
  20. S. McCurdy. Unique continuation on convex domains. Rev. Mat. Iberoam., 39(1):1–28, 2023.
  21. X. Tolsa. Unique continuation at the boundary for harmonic functions in C1superscript𝐶1C^{1}italic_C start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT domains and Lipschitz domains with small constant. Comm. Pure Appl. Math., 76(2):305–336, 2023.
  22. J. Zhu and J. Zhuge. Nodal sets of Dirichlet eigenfunctions in quasiconvex Lipschitz domains. arXiv:2303.02046, 2023.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com