Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dissipativity Conditions for Maximum Dynamic Loadability (2405.05036v1)

Published 8 May 2024 in eess.SY and cs.SY

Abstract: In this paper we consider a possibility of stabilizing very fast electromagnetic interactions between Inverter Based Resources (IBRs), known as the Control Induced System Stability problems. We propose that when these oscillatory interactions are controlled the ability of the grid to deliver power to loads at high rates will be greatly increased. We refer to this grid property as the dynamic grid loadability. The approach is to start by modeling the dynamical behavior of all components. Next, to avoid excessive complexity, interactions between components are captured in terms of unified technology-agnostic aggregate variables, instantaneous power and rate of change of instantaneous reactive power. Sufficient dissipativity conditions in terms of rate of change of energy conversion in components themselves and bounds on their rate of change of interactions are derived in support of achieving the maximum system loadability. These physically intuitive conditions are then used to derive methods to increase loadability using high switching frequency reactive power sources. Numerical simulations confirm the theoretical calculations, and shows dynamic load-side reactive power support increases stable dynamic loadability regions.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (21)
  1. D. D. Siljak, D. M. Stipanovic, and A. I. Zecevic, “Robust decentralized turbine/governor control using linear matrix inequalities,” IEEE Transactions on Power Systems, vol. 17, no. 3, pp. 715–722, 2002.
  2. I. Green, T. Van Cutsem, G. Lammert, G. Irwin, J. Carvalho Martnis, L. Pabon Ospina, K. Song, Z. Vennemann, L. Zhu, J. Ma, A. Badrzadeh, B. Bakar, T. McDermott, E. De Berardinis, M. M Barbieri et al., “Modelling of inverter-based generation for power system dynamic studies,” 2018.
  3. A. Dissanayaka, J. Wiebe, and A. Isaacs, “Panhandle and south texas stability and system strength assessment,” ERCOT Report, 2018.
  4. C. Desoer, “The maximum power transfer theorem for n-ports,” IEEE Transactions on Circuit Theory, vol. 20, no. 3, pp. 328–330, 1973.
  5. A. J. Calvaer, “On the maximum power available from electric multi-ports,” Bulletins de l’Académie Royale de Belgique, vol. 68, no. 1, pp. 843–850, 1982.
  6. P. Sauer, B. Lesieutre, and M. Pai, “Maximum loadability and voltage stability in power systems,” International Journal of Electrical Power & Energy Systems, vol. 15, no. 3, pp. 145–153, 1993.
  7. D. Groß, M. Colombino, J.-S. Brouillon, and F. Dörfler, “The effect of transmission-line dynamics on grid-forming dispatchable virtual oscillator control,” IEEE Transactions on Control of Network Systems, vol. 6, no. 3, pp. 1148–1160, 2019.
  8. N. Mohammed, W. Zhou, and B. Bahrani, “Impacts of the reactive power control on the small-signal stability of grid forming inverters,” in 2023 IEEE PES Innovative Smart Grid Technologies-Asia (ISGT Asia).   IEEE, 2023, pp. 1–5.
  9. V. A. Lacerda, E. P. Araujo, M. Chea-Mañe, and O. Gomis-Bellmunt, “Phasor and emt models of grid-following and grid-forming converters for short-circuit simulations,” Electric Power Systems Research, vol. 223, p. 109662, 2023.
  10. M. D. Ilić and R. Jaddivada, “Multi-layered interactive energy space modeling for near-optimal electrification of terrestrial, shipboard and aircraft systems,” Annual Reviews in Control, vol. 45, pp. 52–75, 2018.
  11. R. Jaddivada and M. D. Ilic, “A feasible and stable distributed interactive control design in energy state space,” in 2021 60th IEEE Conference on Decision and Control (CDC).   IEEE, 2021, pp. 4950–4957.
  12. J. C. Willems, “The behavioral approach to open and interconnected systems,” IEEE control systems magazine, vol. 27, no. 6, pp. 46–99, 2007.
  13. M. Ilic and J. Zaborszky, “Dynamics and control of large electirc power systems,” Willey &Sons, 2000.
  14. D. A. Hill, M. T. Ma, A. R. Ondrejka, B. F. Riddle, M. L. Crawford, and R. T. Johnk, “Aperture excitation of electrically large, lossy cavities,” IEEE transactions on Electromagnetic Compatibility, vol. 36, no. 3, pp. 169–178, 1994.
  15. D. Jeltsema and J. M. Scherpen, “Multidomain modeling of nonlinear networks and systems,” IEEE Control Systems Magazine, vol. 29, no. 4, pp. 28–59, 2009.
  16. J. Wyatt and M. Ilic, “Time-domain reactive power concepts for nonlinear, nonsinusoidal or nonperiodic networks,” in IEEE international symposium on circuits and systems.   IEEE, 1990, pp. 387–390.
  17. F. Forni, R. Sepulchre, and A. Van Der Schaft, “On differential passivity of physical systems,” in 52nd IEEE Conference on Decision and Control.   IEEE, 2013, pp. 6580–6585.
  18. K. C. Kosaraju, R. Pasumarthy, N. M. Singh, and A. L. Fradkov, “Control using new passivity property with differentiation at both ports,” in 2017 Indian Control Conference (ICC).   IEEE, 2017, pp. 7–11.
  19. P. Penfield, R. Spence, and S. Duinker, “A generalized form of tellegen’s theorem,” IEEE Transactions on Circuit Theory, vol. 17, no. 3, pp. 302–305, 1970.
  20. A. Abessi, V. Vahidinasab, and M. S. Ghazizadeh, “Centralized support distributed voltage control by using end-users as reactive power support,” IEEE Transactions on Smart Grid, vol. 7, no. 1, pp. 178–188, 2015.
  21. M. Cvetkovic, “Power-Electronics-Enabled Transient Stabilization of Power Systems,” 7 2018. [Online]. Available: https://kilthub.cmu.edu/articles/thesis/Power-Electronics-Enabled_Transient_Stabilization_of_Power_Systems/6721100

Summary

We haven't generated a summary for this paper yet.