Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Stochastic Fundamental Limits in a Downlink Integrated Sensing and Communication Network (2405.04993v2)

Published 8 May 2024 in cs.IT and math.IT

Abstract: This paper aims to analyze the stochastic performance of a multiple input multiple output (MIMO) integrated sensing and communication (ISAC) system in a downlink scenario, where a base station (BS) transmits a dual-functional radar-communication (DFRC) signal matrix, serving the purpose of transmitting communication data to the user while simultaneously sensing the angular location of a target. The channel between the BS and the user is modeled as a random channel with Rayleigh fading distribution, and the azimuth angle of the target is assumed to follow a uniform distribution. Due to the randomness inherent in the network, the challenge is to consider suitable performance metrics for this randomness. To address this issue, for users, we employ the user's rate outage probability (OP) and ergodic rate, while for target, we propose using the OP of the Cram\'er-Rao lower bound (CRLB) for the angle of arrival and the ergodic CRLB. We have obtained the expressions of these metrics for scenarios where the BS employs two different beamforming methods. Our approach to deriving these metrics involves computing the probability density function (PDF) of the signal-to-noise ratio for users and the CRLB for the target. We have demonstrated that the central limit theorem provides a viable approach for deriving these PDFs. In our numerical results, we demonstrate the trade-off between sensing and communication (S & C) by characterizing the region of S & C metrics and by obtaining the Pareto optimal boundary points, confirmed with simulations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. M. Soltani, M. Mirmohseni, and R. Tafazolli, “Outage tradeoff analysis in a downlink integrated sensing and communication network,” 2023.
  2. F. Liu, L. Zheng, Y. Cui, C. Masouros, A. P. Petropulu, H. Griffiths, and Y. C. Eldar, “Seventy years of radar and comm.: The road from separation to integration,” 2023.
  3. F. Liu, Y. Cui, C. Masouros, J. Xu, T. X. Han, Y. C. Eldar, and S. Buzzi, “Integrated sensing and communications: Toward dual-functional wireless networks for 6g and beyond,” IEEE JSAC, vol. 40, no. 6, 2022.
  4. A. Liu, Z. Huang, M. Li, Y. Wan, W. Li, T. X. Han, C. Liu, R. Du, D. K. P. Tan, J. Lu, Y. Shen, F. Colone, and K. Chetty, “A survey on fundamental limits of integrated sensing and communication,” IEEE Comm. Surveys & Tutorials, vol. 24, 2021.
  5. X. Fang, W. Feng, Y. Chen, N. Ge, and Y. Zhang, “Joint communication and sensing: Models and potentials of using mimo,” 05 2022.
  6. Z. Ren, Y. Peng, X. Song, Y. Fang, L. Qiu, L. Liu, D. W. K. Ng, and J. Xu, “Fundamental crb-rate tradeoff in multi-antenna isac systems with information multicasting and multi-target sensing,” 2023.
  7. H. Hua, T. X. Han, and J. Xu, “Mimo integrated sensing and communication: Crb-rate tradeoff,” IEEE Transactions on Wireless Communications, pp. 1–1, 2023.
  8. M. Kobayashi, G. Caire, and G. Kramer, “Joint state sensing and communication: Optimal tradeoff for a memoryless case,” in 2018 IEEE International Symposium on Information Theory (ISIT), pp. 111–115, 2018.
  9. M. Kobayashi, H. Hamad, G. Kramer, and G. Caire, “Joint state sensing and communication over memoryless multiple access channels,” in 2019 IEEE International Symposium on Information Theory (ISIT), pp. 270–274, IEEE, 2019.
  10. M. Ahmadipour, M. Wigger, and M. Kobayashi, “Joint sensing and communication over memoryless broadcast channels,” in 2020 IEEE Information Theory Workshop (ITW), pp. 1–5, IEEE, 2021.
  11. A. Sutivong, M. Chiang, T. Cover, and Y.-H. Kim, “Channel capacity and state estimation for state-dependent gaussian channels,” IEEE Transactions on Information Theory, vol. 51, no. 4, pp. 1486–1495, 2005.
  12. H. Joudeh and F. M. J. Willems, “Joint communication and binary state detection,” IEEE Journal on Selected Areas in Information Theory, vol. 3, no. 1, pp. 113–124, 2022.
  13. M. Ahmadipour, M. Kobayashi, M. Wigger, and G. Caire, “An information-theoretic approach to joint sensing and communication,” IEEE Transactions on Information Theory, pp. 1–1, 2022.
  14. Y. Xiong, F. Liu, K. Wan, W. Yuan, Y. Cui, and G. Caire, “From torch to projector: Fundamental tradeoff of integrated sensing and communications,” 2023.
  15. Y. Xiong, F. Liu, Y. Cui, W. Yuan, T. X. Han, and G. Caire, “On the fundamental tradeoff of integrated sensing and communications under Gaussian channels,” 2023.
  16. F. Liu, Y. Xiong, K. Wan, T. X. Han, and G. Caire, “Deterministic-random tradeoff of integrated sensing and communications in Gaussian channels: A rate-distortion perspective,” 2023.
  17. M. Liu, M. Yang, and A. Nallanathan, “On the performance of uplink and downlink integrated sensing and communication systems,” in 2022 IEEE GC Wkshps.
  18. M. Liu, M. Yang, H. Li, K. Zeng, Z. Zhang, A. Nallanathan, G. Wang, and L. Hanzo, “Performance analysis and power allocation for cooperative ISAC networks,” IEEE Internet of Things Journal, vol. 10, no. 7, 2023.
  19. M. Liu, M. Yang, H. Li, K. Zeng, Z. Zhang, X. Cheng, A. Nallanathan, D. W. K. Ng, and G. Wang, “Performance analysis and power allocation of joint communication and sensing towards future communication networks,” ArXiv, vol. abs/2201.02972, 2022.
  20. C. Ouyang, Y. Liu, and H. Yang, “NOMA-ISAC: Performance analysis and rate region characterization,” 2022.
  21. M. Al-Jarrah, E. Alsusa, and C. Masouros, “A unified performance framework for integrated sensing-communications based on kl-divergence,” IEEE Trans. on Wireless Comm., no. 99, 2023.
  22. C. Ouyang, Y. Liu, and H. Yang, “MIMO-ISAC: Performance analysis and rate region characterization,” 2023.
  23. Y. Guo, C. Li, C. Zhang, Y. Yao, and B. Xia, “Performance analysis of the full-duplex joint radar and communication system,” in 2021 IEEE/CIC International Conf. on Comm. in China (ICCC), 2021.
  24. S. Lu, F. Liu, Y. Li, K. Zhang, H. Huang, J. Zou, X. Li, Y. Dong, F. Dong, J. Zhu, Y. Xiong, W. Yuan, Y. Cui, and L. Hanzo, “Integrated sensing and communications: Recent advances and ten open challenges,” IEEE Internet of Things Journal, pp. 1–1, 2024.
  25. C. Ouyang, Y. Liu, and H. Yang, “Performance of downlink and uplink integrated sensing and communications ISAC systems,” IEEE Wireless Commu. Letters, vol. 11, no. 9, 2022.
  26. F. Liu, Y.-F. Liu, A. Li, C. Masouros, and Y. C. Eldar, “Cramér-rao bound optimization for joint radar-communication beamforming,” IEEE Transactions on Signal Processing, vol. 70, 2021.
  27. Wikipedia contributors, “Central limit theorem — Wikipedia, the free encyclopedia,” 2023. [Online; accessed 19-May-2023].
  28. A. Das and W. S. Geisler, “A method to integrate and classify normal distributions,” 2023.
  29. I. Bekkerman and J. Tabrikian, “Target detection and localization using MIMO radars and sonars,” IEEE Transactions on Signal Processing, vol. 54, no. 10, 2006.
  30. A. E. Gamal and Y.-H. Kim, Network Information Theory. USA: Cambridge University Press, 2012.
  31. Wikipedia contributors, “Chi-squared distribution — Wikipedia, the free encyclopedia,” 2024. [Online; accessed 29-January-2024].
  32. Wikipedia contributors, “Generalized chi-squared distribution — Wikipedia, the free encyclopedia,” 2024. [Online; accessed 22-February-2024].
  33. A. Winkelbauer, “Moments and absolute moments of the normal distribution,” 2014.

Summary

We haven't generated a summary for this paper yet.