Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A leadless power transfer and wireless telemetry solutions for an endovascular electrocorticography (2405.04806v1)

Published 8 May 2024 in eess.SY and cs.SY

Abstract: Endovascular brain-computer interfaces (eBCIs) offer a minimally invasive way to connect the brain to external devices, merging neuroscience, engineering, and medical technology. Achieving wireless data and power transmission is crucial for the clinical viability of these implantable devices. Typically, solutions for endovascular electrocorticography (ECoG) include a sensing stent with multiple electrodes (e.g. in the superior sagittal sinus) in the brain, a subcutaneous chest implant for wireless energy harvesting and data telemetry, and a long (tens of centimetres) cable with a set of wires in between. This long cable presents risks and limitations, especially for younger patients or those with fragile vasculature. This work introduces a wireless and leadless telemetry and power transfer solution for endovascular ECoG. The proposed solution includes an optical telemetry module and a focused ultrasound (FUS) power transfer system. The proposed system can be miniaturised to fit in an endovascular stent. Our solution uses optical telemetry for high-speed data transmission (over 2 Mbit/s, capable of transmitting 41 ECoG channels at a 2 kHz sampling rate and 24-bit resolution) and the proposed power transferring scheme provides up to 10mW power budget into the site of the endovascular implants under the safety limit. Tests on bovine tissues confirmed the system's effectiveness, suggesting that future custom circuit designs could further enhance eBCI applications by removing wires and auxiliary implants, minimising complications.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. T. J. Oxley, N. L. Opie, S. E. John, G. S. Rind, S. M. Ronayne, T. L. Wheeler, J. W. Judy, A. J. McDonald, A. Dornom, and T. J. Lovell, “Minimally invasive endovascular stent-electrode array for high-fidelity, chronic recordings of cortical neural activity,” Nature biotechnology, vol. 34, no. 3, pp. 320–327, 2016. [Online]. Available: https://www.nature.com/articles/nbt.3428.pdf
  2. S. Soldozy, S. Young, J. S. Kumar, S. Capek, D. R. Felbaum, W. C. Jean, M. S. Park, and H. R. Syed, “A systematic review of endovascular stent-electrode arrays, a minimally invasive approach to brain-machine interfaces,” Neurosurgical Focus, vol. 49, no. 1, p. E3, 2020.
  3. A. I. Mahmood, S. K. Gharghan, M. A. Eldosoky, and A. M. Soliman, “Near‐field wireless power transfer used in biomedical implants: A comprehensive review,” IET Power Electronics, vol. 15, no. 16, pp. 1936–1955, 2022.
  4. T. J. Oxley, P. E. Yoo, G. S. Rind, S. M. Ronayne, C. S. Lee, C. Bird, V. Hampshire, R. P. Sharma, A. Morokoff, and D. L. Williams, “Motor neuroprosthesis implanted with neurointerventional surgery improves capacity for activities of daily living tasks in severe paralysis: first in-human experience,” Journal of neurointerventional surgery, vol. 13, no. 2, pp. 102–108, 2021. [Online]. Available: https://jnis.bmj.com/content/neurintsurg/13/2/102.full.pdf
  5. J. F. Brannigan, A. Fry, N. L. Opie, B. C. Campbell, P. J. Mitchell, and T. J. Oxley, “Endovascular brain-computer interfaces in poststroke paralysis,” Stroke, 2023.
  6. S. Majidi, N. Harel, M. Escalon, A. Sawyer, M. Lapinska, A. Rogers, R. Nogueira, D. Weber, and D. Putrino, “Endovascular brain-computer interface to restore motor control for the command of digital devices in patients with severe quadriparesis (s38. 001),” 2023.
  7. N. L. Opie, S. M. Ronayne, G. S. Rind, P. E. Yoo, and T. J. Oxley, “Mechanical suitability of an endovascular brain-computer interface,” in 2020 8th International Winter Conference on Brain-Computer Interface (BCI).   IEEE, 2020, Conference Proceedings, pp. 1–6.
  8. T. Oxley, “Long-term safety of a fully implanted endovascular brain-computer interface for severe paralysis,” Archives of Physical Medicine and Rehabilitation, vol. 103, no. 12, p. e53, 2022.
  9. P. Mitchell, S. C. M. Lee, P. E. Yoo, A. Morokoff, R. P. Sharma, D. L. Williams, C. MacIsaac, M. E. Howard, L. Irving, I. Vrljic, C. Williams, S. Bush, A. H. Balabanski, K. J. Drummond, P. Desmond, D. Weber, T. Denison, S. Mathers, T. J. O’Brien, J. Mocco, D. B. Grayden, D. S. Liebeskind, N. L. Opie, T. J. Oxley, and B. C. V. Campbell, “Assessment of safety of a fully implanted endovascular brain-computer interface for severe paralysis in 4 patients: The stentrode with thought-controlled digital switch (switch) study,” JAMA Neurology, vol. 80, no. 3, pp. 270–278, 2023. [Online]. Available: https://doi.org/10.1001/jamaneurol.2022.4847
  10. S. Sanjeev and P. P. Karpawich, “Superior vena cava and innominate vein dimensions in growing children: an aid for interventional devices and transvenous leads,” Pediatric cardiology, vol. 27, pp. 414–419, 2006.
  11. L. R. Sun, D. Harrar, G. Drocton, C. Castillo-Pinto, P. Gailloud, and M. S. Pearl, “Endovascular therapy for acute stroke in children: age and size technical limitations,” Journal of neurointerventional surgery, 2021.
  12. B. D. Nelson, S. S. Karipott, Y. Wang, and K. G. Ong, “Wireless technologies for implantable devices,” Sensors, vol. 20, no. 16, p. 4604, 2020.
  13. S. Aggarwal and N. Chugh, “Review of machine learning techniques for eeg based brain computer interface,” Archives of Computational Methods in Engineering, pp. 1–20, 2022.
  14. M. J. Karimi, A. Schmid, and C. Dehollain, “Wireless power and data transmission for implanted devices via inductive links: A systematic review,” IEEE Sensors Journal, vol. 21, no. 6, pp. 7145–7161, 2021.
  15. S. Yoo, J. Lee, H. Joo, S. Sunwoo, S. Kim, and D. Kim, “Wireless power transfer and telemetry for implantable bioelectronics,” Advanced healthcare materials, vol. 10, no. 17, p. 2100614, 2021.
  16. A. I. Kanaan and A. M. Sabaawi, “Implantable wireless systems: A review of potentials and challenges,” Antenna Systems, 2021.
  17. Z. Xu, N. D. Truong, A. Nikpour, and O. Kavehei, “A miniaturized and low-energy subcutaneous optical telemetry module for neurotechnology,” Journal of Neural Engineering, vol. 20, no. 3, p. 036017, 2023.
  18. S. Drakopoulou, F. Varkevisser, L. Sohail, M. Aqamolaei, T. L. Costa, and G. D. Spyropoulos, “Hybrid neuroelectronics: towards a solution-centric way of thinking about complex problems in neurostimulation tools,” frontiers in electronics, vol. 4, 2023.
  19. J. M. Tanskanen, A. Ahtiainen, and J. A. Hyttinen, “Toward closed-loop electrical stimulation of neuronal systems: a review,” Bioelectricity, vol. 2, no. 4, pp. 328–347, 2020.
  20. B. Upendra, B. Panigrahi, K. Singh, and G. Sabareesh, “Recent advancements in piezoelectric energy harvesting for implantable medical devices,” Journal of Intelligent Material Systems and Structures, vol. 35, no. 2, pp. 129–155, 2024.
  21. N. Sezer and M. Koç, “A comprehensive review on the state-of-the-art of piezoelectric energy harvesting,” Nano energy, vol. 80, p. 105567, 2021.
  22. S. Azimi, A. Golabchi, A. Nekookar, S. Rabbani, M. H. Amiri, K. Asadi, and M. M. Abolhasani, “Self-powered cardiac pacemaker by piezoelectric polymer nanogenerator implant,” Nano Energy, vol. 83, p. 105781, 2021.
  23. H. Li, J. Liu, K. Li, and Y. Liu, “A review of recent studies on piezoelectric pumps and their applications,” Mechanical Systems and Signal Processing, vol. 151, p. 107393, 2021.
  24. B. İlik, A. Koyuncuoğlu, Özlem Şardan Sukas, and H. Külah, “Thin film piezoelectric acoustic transducer for fully implantable cochlear implants,” Sensors and Actuators A: Physical, vol. 280, pp. 38–46, 2018. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0924424718300827
  25. B. L. Turner, S. Senevirathne, K. Kilgour, D. McArt, M. Biggs, S. Menegatti, and M. A. Daniele, “Ultrasound‐powered implants: A critical review of piezoelectric material selection and applications,” Advanced healthcare materials, vol. 10, no. 17, p. 2100986, 2021.
  26. H. Basaeri, D. B. Christensen, and S. Roundy, “A review of acoustic power transfer for bio-medical implants,” Smart Materials and Structures, vol. 25, no. 12, p. 123001, 2016.
  27. M. Haq, “Application of piezo transducers in biomedical science for health monitoring and energy harvesting problems,” Materials Research Express, vol. 6, no. 2, p. 022002, 2018.
  28. L. Radziemski and I. R. S. Makin, “In vivo demonstration of ultrasound power delivery to charge implanted medical devices via acute and survival porcine studies,” Ultrasonics, vol. 64, pp. 1–9, 2016.
  29. X. Wan, P. Chen, Z. Xu, X. Mo, H. Jin, W. Yang, S. Wang, J. Duan, B. Hu, and Z. Luo, “Hybrid‐piezoelectret based highly efficient ultrasonic energy harvester for implantable electronics,” Advanced Functional Materials, vol. 32, no. 24, p. 2200589, 2022.
  30. S. Bansal, C. Choi, J. Hardwick, B. Bagchi, M. K. Tiwari, and S. Subramanian, “Transmissive labyrinthine acoustic metamaterial‐based holography for extraordinary energy harvesting,” Advanced Engineering Materials, vol. 25, no. 4, p. 2201117, 2023.
  31. T. Zhang, H. Liang, Z. Wang, C. Qiu, Y. B. Peng, X. Zhu, J. Li, X. Ge, J. Xu, and X. Huang, “Piezoelectric ultrasound energy–harvesting device for deep brain stimulation and analgesia applications,” Science advances, vol. 8, no. 15, p. eabk0159, 2022.
  32. B. Zhang, J. Wu, X. Cheng, X. Wang, D. Xiao, J. Zhu, X. Wang, and X. Lou, “Lead-free piezoelectrics based on potassium–sodium niobate with giant d 33,” ACS applied materials and interfaces, vol. 5, no. 16, pp. 7718–7725, 2013.
  33. M. J. Ackerman, “The visible human project,” Proceedings of the IEEE, vol. 86, no. 3, pp. 504–511, 1998.
  34. C. Multiphysics, “Introduction to comsol multiphysics®,” COMSOL Multiphysics, Burlington, MA, accessed Feb, vol. 9, no. 2018, p. 32, 1998.

Summary

We haven't generated a summary for this paper yet.