Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Energy Bounds for Discontinuous Galerkin Spectral Element Approximations of Well-Posed Overset Grid Problems for Hyperbolic Systems (2405.04668v2)

Published 7 May 2024 in math.NA and cs.NA

Abstract: We show that even though the Discontinuous Galerkin Spectral Element Method is stable for hyperbolic boundary-value problems, and the overset domain problem is well-posed in an appropriate norm, the energy of the approximation of the latter is bounded by data only for fixed polynomial order, mesh, and time. In the absence of dissipation, coupling of the overlapping domains is destabilizing by allowing positive eigenvalues in the system to be integrated in time. This coupling can be stabilized in one space dimension by using the upwind numerical flux. To help provide additional dissipation, we introduce a novel penalty method that applies dissipation at arbitrary points within the overlap region and depends only on the difference between the solutions. We present numerical experiments in one space dimension to illustrate the implementation of the well-posed penalty formulation, and show spectral convergence of the approximations when sufficient dissipation is applied.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com