FRACTAL: An Ultra-Large-Scale Aerial Lidar Dataset for 3D Semantic Segmentation of Diverse Landscapes (2405.04634v4)
Abstract: Mapping agencies are increasingly adopting Aerial Lidar Scanning (ALS) as a new tool to map buildings and other above-ground structures. Processing ALS data at scale requires efficient point classification methods that perform well over highly diverse territories. Large annotated Lidar datasets are needed to evaluate these classification methods, however, current Lidar benchmarks have restricted scope and often cover a single urban area. To bridge this data gap, we introduce the FRench ALS Clouds from TArgeted Landscapes (FRACTAL) dataset: an ultra-large-scale aerial Lidar dataset made of 100,000 dense point clouds with high quality labels for 7 semantic classes and spanning 250 km$2$. FRACTAL achieves high spatial and semantic diversity by explicitly sampling rare classes and challenging landscapes from five different regions of France. We describe the data collection, annotation, and curation process of the dataset. We provide baseline semantic segmentation results using a state of the art 3D point cloud classification model. FRACTAL aims to support the development of 3D deep learning approaches for large-scale land monitoring.
- M. Melin, A. C. Shapiro, and P. Glover-Kapfer, “LiDAR for ecology and conservation - WWF conservation technology series (3),” pp. 24–25, 2017. [Online]. Available: www.researchgate.net/publication/320347018
- N. A. Muhadi, A. F. Abdullah, S. K. Bejo, M. R. Mahadi, and A. Mijic, “The use of LiDAR-derived DEM in flood applications: A review,” 7 2020. [Online]. Available: www.mdpi.com/2072-4292/12/14/2308
- M. Yebra, S. Marselis, A. van Dijk, G. Cary, and Y. Chen, “Using Lidar for forest and fuel structure mapping: Options, benefits, requirements and costs,” 2015. [Online]. Available: www.bnhcrc.com.au/sites/default/files/managed/downloads/using_lidar_for_forest_and_fuel_structure_mapping_final.pdf
- G. Kakoulaki, A. Martinez, and F. Petro, “Non-commercial Light Detection and Ranging (LiDAR) data in Europe,” 2021. [Online]. Available: https://doi.org/10.2760/212427
- Institut national de l’information géographique et forestière (IGN), “Lidar HD [Database],” 1 2023. [Online]. Available: www.geoservices.ign.fr/documentation/donnees/alti/lidarhd
- “TopoDOT [software].” [Online]. Available: www.topodot.com
- “TerraScan [software].” [Online]. Available: terrasolid.com/products/terrascan
- K. Yen, “Automated LiDAR extraction software,” 2021. [Online]. Available: https://dot.ca.gov/-/media/dot-media/programs/research-innovation-system-information/documents/preliminary-investigations/pi-0324-lidarsoftwarepi.pdf
- C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “PointNet: Deep learning on point sets for 3D classification and segmentation,” Arxiv, 12 2016. [Online]. Available: https://arxiv.org/abs/1612.00593
- C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “PointNet++: Deep hierarchical feature learning on point sets in a metric space,” Arxiv, 6 2017. [Online]. Available: https://arxiv.org/abs/1706.02413
- C. Gaydon and F. Roche, “PureForest: A large-scale aerial lidar and aerial imagery dataset for tree species classification in monospecific forests,” 4 2024. [Online]. Available: https://arxiv.org/abs/2404.12064
- N. Varney, V. K. Asari, and Q. Graehling, “DALES: A large-scale aerial LiDAR data set for semantic segmentation,” ArXiv, 4 2020. [Online]. Available: http://arxiv.org/abs/2004.11985
- P. Zachar, K. Bakuła, and W. Ostrowski, “CENAGIS-ALS Benchmark - new proposal for dense ALS benchmark based on the review of datasets and benchmarks for 3D point cloud segmentation,” vol. 48. International Society for Photogrammetry and Remote Sensing, 10 2023, pp. 227–234. [Online]. Available: https://doi.org/10.5194/isprs-archives-XLVIII-1-W3-2023-227-2023
- N. Qin, W. Tan, L. Ma, D. Zhang, and J. Li, “OpenGF: An ultra-large-scale ground filtering dataset built upon open ALS point clouds around the world.” [Online]. Available: https://arxiv.org/abs/2101.09641
- J. Niemeyer, F. Rottensteiner, and U. Soergel, “Contextual classification of lidar data and building object detection in urban areas,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 87, pp. 152–165, 1 2014. [Online]. Available: https://doi.org/10.1016/j.isprsjprs.2013.11.001
- S. M. I. Zolanvari, S. Ruano, A. Rana, A. Cummins, R. E. da Silva, M. Rahbar, and A. Smolic, “DublinCity: Annotated LiDAR point cloud and its applications,” 9 2019. [Online]. Available: http://arxiv.org/abs/1909.03613
- Z. Ye, Y. Xu, R. Huang, X. Tong, X. Li, X. Liu, K. Luan, L. Hoegner, and U. Stilla, “LASDU: A large-scale aerial LiDAR dataset for semantic labeling in dense urban areas,” ISPRS International Journal of Geo-Information, vol. 9, 7 2020. [Online]. Available: https://doi.org/10.3390/ijgi9070450
- M. Kölle, D. Laupheimer, S. Schmohl, N. Haala, F. Rottensteiner, J. D. Wegner, and H. Ledoux, “The Hessigheim 3D (H3D) benchmark on semantic segmentation of high-resolution 3D point clouds and textured meshes from UAV LiDAR and Multi-View-Stereo,” ISPRS Open Journal of Photogrammetry and Remote Sensing, vol. 1, p. 100001, 10 2021. [Online]. Available: https://doi.org/10.1016/j.ophoto.2021.100001
- Institut national de l’information géographique et forestière (IGN), “LiDAR HD version 1.0 - descriptif de contenu des nuages de points LiDAR,” 10 2023. [Online]. Available: www.geoservices.ign.fr/sites/default/files/2023-10/DC_LiDAR_HD_1-0_PTS.pdf
- ——, “ORTHO HR [Database],” 1 2023. [Online]. Available: www.geoservices.ign.fr/bdortho
- T. Kattenborn, F. Schiefer, J. Frey, H. Feilhauer, M. D. Mahecha, and C. F. Dormann, “Spatially autocorrelated training and validation samples inflate performance assessment of convolutional neural networks,” ISPRS Open Journal of Photogrammetry and Remote Sensing, vol. 5, 8 2022. [Online]. Available: https://doi.org/10.1016/j.ophoto.2022.100018
- Institut national de l’information géographique et forestière (IGN), “Bd topo® [database],” 2024. [Online]. Available: www.geoservices.ign.fr/bdtopo
- The American Society for Photogrammetry and Remote Sensing, “LAS specification 1.4 - R15,” 2019. [Online]. Available: www.asprs.org/wp-content/uploads/2019/07/LAS_1_4_r15.pdf
- C. Gaydon, “Myria3D: Deep learning for the semantic segmentation of aerial Lidar point clouds [software],” 2022. [Online]. Available: www.github.com/IGNF/myria3d
- W. Falcon and T. P. L. team, “PyTorch Lightning [software],” 3 2019. [Online]. Available: www.github.com/Lightning-AI/lightning
- M. Fey and J. E. Lenssen, “Fast graph representation learning with PyTorch Geometric,” 2019. [Online]. Available: www.github.com/pyg-team/pytorch_geometric
- Q. Hu, B. Yang, L. Xie, S. Rosa, Y. Guo, Z. Wang, N. Trigoni, and A. Markham, “RandLA-Net: Efficient semantic segmentation of large-scale point clouds,” Arxiv, 11 2019. [Online]. Available: https://arxiv.org/abs/1911.11236
- J. Behley, M. Garbade, A. Milioto, J. Quenzel, S. Behnke, C. Stachniss, and J. Gall, “SemanticKITTI: A dataset for semantic scene understanding of LiDAR sequences,” 2019. [Online]. Available: https://arxiv.org/abs/1904.01416
- T. Hackel, N. Savinov, L. Ladicky, J. D. Wegner, K. Schindler, and M. Pollefeys, “SEMANTIC3D.NET: A new large-scale point cloud classification benchmark,” vol. IV-1-W1, 2017, pp. 91–98. [Online]. Available: http://www.semantic3d.net
- Comet ML, “Comet [ML platform],” 2024. [Online]. Available: www.comet.com
- A. Garioud, N. Gonthier, L. Landrieu, A. D. Wit, M. Valette, M. Poupée, S. Giordano, and B. Wattrelos, “FLAIR: a country-scale land cover semantic segmentation dataset from multi-source optical imagery,” 2023. [Online]. Available: https://doi.org/10.48550/arXiv.2310.13336