A new modular plethystic $\mathrm{SL}_2(\mathbb{F})$-isomorphism $\mathrm{Sym}^{N-1}E \otimes \bigwedge^{N+1} \mathrm{Sym}^{d+1}E \cong Δ^{(2,1^{N-1})} \mathrm{Sym}^d E$ (2405.04631v2)
Abstract: Let $\mathbb{F}$ be a field and let $E$ be the natural representation of $\mathrm{SL}2(\mathbb{F})$. Given a vector space $V$, let $\Delta{(2,1{N-1})}V$ be the kernel of the multiplication map $\bigwedgeN V \otimes V \rightarrow \bigwedge{N+1}V$. We construct an explicit $\mathrm{SL}_2(\mathbb{F})$-isomorphism $\mathrm{Sym}{N-1}E \otimes \bigwedge{N+1} \mathrm{Sym}{d+1}E \cong \Delta{(2,1{N-1})} \mathrm{Sym}d E$. This $\mathrm{SL}_2(\mathbb{F})$-isomorphism is a modular lift of the $q$-binomial identity $q{\frac{N(N-1)}{2}}[N]_q \binom{d+1}{N+1}_q = s{(2,1{N-1})}(1,q,\ldots, qd)$, where $s_{(2,1{N-1})}$ is the Schur function for the partition $(2,1{N-1})$. This identity, which follows from our main theorem, implies the existence of an isomorphism when $\mathbb{F}$ is the field of complex numbers but it is notable, and not typical of the general case, that there is an explicit isomorphism defined in a uniform way for any field.
- Plethysms of symmetric functions and highest weight representations. Trans. Amer. Math. Soc, 374 8013–8043, 2021.
- Polynomial representations of GLnsubscriptGL𝑛\operatorname{GL}_{n}roman_GL start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT: with an appendix on Schensted Correspondence and Littelmann Paths, volume 830 of Lecture Notes in Mathematics. Springer, 2008.
- Modular plethystic isomorphisms for two-dimensional linear groups J. Alg, 602 441–483, 2022.
- Plethysms of symmetric functions and representations of SL2(𝐂)subscriptSL2𝐂\mathrm{SL}_{2}(\mathbf{C})roman_SL start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( bold_C ). Algebr. Comb., 4 27–68, 2021.