Papers
Topics
Authors
Recent
Search
2000 character limit reached

Comparing Ways of Obtaining Candidate Orderings from Approval Ballots

Published 7 May 2024 in cs.GT | (2405.04525v1)

Abstract: To understand and summarize approval preferences and other binary evaluation data, it is useful to order the items on an axis which explains the data. In a political election using approval voting, this could be an ideological left-right axis such that each voter approves adjacent candidates, an analogue of single-peakedness. In a perfect axis, every approval set would be an interval, which is usually not possible, and so we need to choose an axis that gets closest to this ideal. The literature has developed algorithms for optimizing several objective functions (e.g., minimize the number of added approvals needed to get a perfect axis), but provides little help with choosing among different objectives. In this paper, we take a social choice approach and compare 5 different axis selection rules axiomatically, by studying the properties they satisfy. We establish some impossibility theorems, and characterize (within the class of scoring rules) the rule that chooses the axes that maximize the number of votes that form intervals, using the axioms of ballot monotonicity and resistance to cloning. Finally, we study the behavior of the rules on data from French election surveys, on the votes of justices of the US Supreme Court, and on synthetic data.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 3 tweets with 2 likes about this paper.