Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Boundary unique continuation in planar domains by conformal mapping (2405.04388v3)

Published 7 May 2024 in math.AP

Abstract: Let $\Omega\subset\mathbb R2$ be a chord arc domain. We give a simple proof of the the following fact, which is commonly known to be true: a nontrivial harmonic function which vanishes continuously on a relatively open set of the boundary cannot have the norm of the gradient which vanishes on a subset of positive surface measure (arc length). This result is conjectured to be true in higher dimensions by Lin, in Lipschitz domains. Let now $\Omega\subset\mathbb R2$ be a $C1$ domain with Dini mean oscillations. We prove that a nontrivial harmonic function which vanishes continuously on a relatively open subset of the boundary $\partial\Omega\cap B_1$ has a finite number of critical points in $\overline\Omega\cap B_{1/2}$. The latter improves some recent results by Kenig and Zhao. Our technique involves a conformal mapping which moves the boundary where the harmonic function vanishes into an interior nodal line of a new harmonic function, after a further reflection. Then, size estimates of the critical set - up to the boundary - of the original harmonic function can be understood in terms of estimates of the \emph{interior} critical set of the new harmonic function and of the critical set - up to the boundary - of the conformal mapping.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. D. Apushkinskaya and A. Nazarov. A counterexample to the Hopf-Oleinik lemma (elliptic case). Anal. PDE 9-2 (2016), 439-458.
  2. D. Apushkinskaya and A. Nazarov. On the boundary point principle for divergence-type equations. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 30-4 (2019), 677-699.
  3. S. Bortz and M. Engelstein. Reifenberg flatness and oscillation of the unit normal vector. (2017) arXiv:1708.05331.
  4. B. Dahlberg. On the absolute continuity of elliptic measure. Amer. J. Math. 108 (1986), 1119-1138.
  5. J. M. Gallegos. Size of the zero set of solutions of elliptic PDEs near the boundary of Lipschitz domains with small Lipschitz constant. Calc. Var. Partial Differential Equations 62-4 (2023), 1-52.
  6. D. Jerison and C. Kenig. Boundary behavior of harmonic functions in non-tangentially accessible domains. Adv. Math. 46-1 (1982), 80-147.
  7. C. Kenig and T. Toro. Harmonic measure on locally flat domains. Duke Math. J. 87 (1997), 501-551.
  8. C. Kenig and T. Toro. Free boundary regularity for harmonic measure and Poisson kernels. Ann. of Math. (2) 150 (1999), 369-454.
  9. C. Kenig and T. Toro. Poisson kernel characterization of Reifenberg flat chord arc domains. Ann. Sci. Éc. Norm. Supér. (4) 36-3 (2003), 323-401.
  10. C. Kenig and T. Toro. Free boundary regularity below the continuous threshold: 2-phase problems. J. Reine Angew. Math. 596 (2006), 1-44.
  11. C. Kenig and Z. Zhao. Boundary unique continuation on C1superscript𝐶1C^{1}italic_C start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT-Dini domains and the size of the singular set. Arch. Ration. Mech. Anal. 245 (2022), 1-88.
  12. C. Kenig and Z. Zhao. Examples of non-Dini domains with large singular sets. Adv. Nonlinear Stud. (Special Issue: In honor of David Jerison) 23-1 (2023), 1-33.
  13. C. Kenig and Z. Zhao. A note on the critical set of harmonic functions near the boundary. (2024), arXiv:2402.08881.
  14. I. Kukavika and K. Nyström. Unique continuation on the boundary for Dini domains. Proc. Amer. Math. Soc. 126 (1998), 441-446.
  15. J. Lewis and K. Nyström. Boundary behaviour of p𝑝pitalic_p-harmonic functions in domains beyond Lipschitz domains. Adv. Calc. Var. 1 (2008), 133-177.
  16. J. Lewis and K. Nyström. Regularity and free boundary regularity for the p𝑝pitalic_p-Laplace operator in Reifenberg flat and Ahlfors regular domains. J. Amer. Math. Soc. 25-3 (2012), 827-862.
  17. F. Lin. Nodal sets of solutions of elliptic and parabolic equations. Comm. Pure Appl. Math. 45 (1991), 287-308.
  18. S. McCurdy. Unique continuation on convex domains. Rev. Mat. Iberoam. 39-1 (2023), 1-28.
  19. A. Naber and D. Valtorta. Rectifiable-Reifenberg and the regularity of stationary and minimizing harmonic maps. Ann. of Math. (2) 185 (2017), 131-227.
  20. E. Reifenberg. Solution of the Plateau Problem for m𝑚mitalic_m-dimensional surfaces of varying topological type. Acta Math. 104 (1960), 1-92.
  21. S. Semmes. Analysis vs. geometry on a class of rectifiable hypersurfaces in ℝnsuperscriptℝ𝑛\mathbb{R}^{n}blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT. Indiana Univ. Math. J. 39 (1990), 1005-1035.
  22. X. Tolsa. Unique continuation at the boundary for harmonic functions in C1superscript𝐶1C^{1}italic_C start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT domains and Lipschitz domains with small constant. Comm. Pure Appl. Math. 76-2 (2023), 305-336.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com