Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Kauffman bracket skein module of $(S^1 \times S^2) \ \# \ (S^1 \times S^2)$ (2405.04337v4)

Published 7 May 2024 in math.GT and math.QA

Abstract: Determining the structure of the Kauffman bracket skein module of all $3$-manifolds over the ring of Laurent polynomials $\mathbb Z[A{\pm 1}]$ is a big open problem in skein theory. Very little is known about the skein module of non-prime manifolds over this ring. In this paper, we compute the Kauffman bracket skein module of the $3$-manifold $(S1 \times S2) \ # \ (S1 \times S2)$ over the ring $\mathbb Z[A{\pm 1}]$. We do this by analysing the submodule of handle sliding relations, for which we provide a suitable basis. Along the way we compute the Kauffman bracket skein module of $(S1 \times S2) \ # \ (S1 \times D2)$. We also show that the skein module of $(S1 \times S2) \ # \ (S1 \times S2)$ does not split into the sum of free and torsion submodules. Furthermore, we illustrate two families of torsion elements in this skein module.

Summary

We haven't generated a summary for this paper yet.