Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

QR factorization of ill-conditioned tall-and-skinny matrices on distributed-memory systems (2405.04237v1)

Published 7 May 2024 in cs.DC, cs.DS, and cs.PF

Abstract: In this paper we present a novel algorithm developed for computing the QR factorisation of extremely ill-conditioned tall-and-skinny matrices on distributed memory systems. The algorithm is based on the communication-avoiding CholeskyQR2 algorithm and its block Gram-Schmidt variant. The latter improves the numerical stability of the CholeskyQR2 algorithm and significantly reduces the loss of orthogonality even for matrices with condition numbers up to $10{15}$. Currently, there is no distributed GPU version of this algorithm available in the literature which prevents the application of this method to very large matrices. In our work we provide a distributed implementation of this algorithm and also introduce a modified version that improves the performance, especially in the case of extremely ill-conditioned matrices. The main innovation of our approach lies in the interleaving of the CholeskyQR steps with the Gram-Schmidt orthogonalisation, which ensures that update steps are performed with fully orthogonalised panels. The obtained orthogonality and numerical stability of our modified algorithm is equivalent to CholeskyQR2 with Gram-Schmidt and other state-of-the-art methods. Weak scaling tests performed with our test matrices show significant performance improvements. In particular, our algorithm outperforms state-of-the-art Householder-based QR factorisation algorithms available in ScaLAPACK by a factor of $6$ on CPU-only systems and up to $80\times$ on GPU-based systems with distributed memory.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com