Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

LingML: Linguistic-Informed Machine Learning for Enhanced Fake News Detection (2405.04165v1)

Published 7 May 2024 in cs.CL

Abstract: Nowadays, Information spreads at an unprecedented pace in social media and discerning truth from misinformation and fake news has become an acute societal challenge. Machine learning (ML) models have been employed to identify fake news but are far from perfect with challenging problems like limited accuracy, interpretability, and generalizability. In this paper, we enhance ML-based solutions with linguistics input and we propose LingML, linguistic-informed ML, for fake news detection. We conducted an experimental study with a popular dataset on fake news during the pandemic. The experiment results show that our proposed solution is highly effective. There are fewer than two errors out of every ten attempts with only linguistic input used in ML and the knowledge is highly explainable. When linguistics input is integrated with advanced large-scale ML models for natural language processing, our solution outperforms existing ones with 1.8% average error rate. LingML creates a new path with linguistics to push the frontier of effective and efficient fake news detection. It also sheds light on real-world multi-disciplinary applications requiring both ML and domain expertise to achieve optimal performance.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets