Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

pFedLVM: A Large Vision Model (LVM)-Driven and Latent Feature-Based Personalized Federated Learning Framework in Autonomous Driving (2405.04146v3)

Published 7 May 2024 in cs.RO and cs.DC

Abstract: Deep learning-based Autonomous Driving (AD) models often exhibit poor generalization due to data heterogeneity in an ever domain-shifting environment. While Federated Learning (FL) could improve the generalization of an AD model (known as FedAD system), conventional models often struggle with under-fitting as the amount of accumulated training data progressively increases. To address this issue, instead of conventional small models, employing Large Vision Models (LVMs) in FedAD is a viable option for better learning of representations from a vast volume of data. However, implementing LVMs in FedAD introduces three challenges: (I) the extremely high communication overheads associated with transmitting LVMs between participating vehicles and a central server; (II) lack of computing resource to deploy LVMs on each vehicle; (III) the performance drop due to LVM focusing on shared features but overlooking local vehicle characteristics. To overcome these challenges, we propose pFedLVM, a LVM-Driven, Latent Feature-Based Personalized Federated Learning framework. In this approach, the LVM is deployed only on central server, which effectively alleviates the computational burden on individual vehicles. Furthermore, the exchange between central server and vehicles are the learned features rather than the LVM parameters, which significantly reduces communication overhead. In addition, we utilize both shared features from all participating vehicles and individual characteristics from each vehicle to establish a personalized learning mechanism. This enables each vehicle's model to learn features from others while preserving its personalized characteristics, thereby outperforming globally shared models trained in general FL. Extensive experiments demonstrate that pFedLVM outperforms the existing state-of-the-art approaches.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (56)
  1. C. Yang, M. Xu, Q. Wang, Z. Chen, K. Huang, Y. Ma, K. Bian, G. Huang, Y. Liu, X. Jin, and X. Liu, “Flash: Heterogeneity-aware federated learning at scale,” IEEE Transactions on Mobile Computing, vol. 23, no. 1, pp. 483–500, 2024.
  2. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, “Communication-efficient learning of deep networks from decentralized data,” in Artificial Intelligence and Statistics.   PMLR, 2017, pp. 1273–1282.
  3. Y. M. Saputra, D. N. Nguyen, D. T. Hoang, T. X. Vu, E. Dutkiewicz, and S. Chatzinotas, “Federated learning meets contract theory: Economic-efficiency framework for electric vehicle networks,” IEEE Transactions on Mobile Computing, vol. 21, no. 8, pp. 2803–2817, 2022.
  4. G. Zhu, Y. Du, D. Gündüz, and K. Huang, “One-bit over-the-air aggregation for communication-efficient federated edge learning: Design and convergence analysis,” IEEE Transactions on Wireless Communications, vol. 20, no. 3, pp. 2120–2135, 2021.
  5. G. Zhu, D. Liu, Y. Du, C. You, J. Zhang, and K. Huang, “Toward an intelligent edge: Wireless communication meets machine learning,” IEEE Communications Magazine, vol. 58, no. 1, pp. 19–25, 2020.
  6. G. Zhu, Z. Lyu, X. Jiao, P. Liu, M. Chen, J. Xu, S. Cui, and P. Zhang, “Pushing ai to wireless network edge: An overview on integrated sensing, communication, and computation towards 6g,” Science China Information Sciences, vol. 66, no. 3, p. 130301, 2023.
  7. L. Fantauzzo, E. Fanì, D. Caldarola, A. Tavera, F. Cermelli, M. Ciccone, and B. Caputo, “Feddrive: Generalizing federated learning to semantic segmentation in autonomous driving,” in 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2022, pp. 11 504–11 511.
  8. W.-B. Kou, S. Wang, G. Zhu, B. Luo, Y. Chen, D. W. K. Ng, and Y.-C. Wu, “Communication resources constrained hierarchical federated learning for end-to-end autonomous driving,” in 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2023, pp. 9383–9390.
  9. S. Wang, C. Li, D. W. K. Ng, Y. C. Eldar, H. V. Poor, Q. Hao, and C. Xu, “Federated deep learning meets autonomous vehicle perception: Design and verification,” IEEE Network, vol. 37, no. 3, pp. 16–25, 2023.
  10. H.-T. Wu, H. Li, H.-L. Chi, W.-B. Kou, Y.-C. Wu, and S. Wang, “A hierarchical federated learning framework for collaborative quality defect inspection in construction,” Engineering Applications of Artificial Intelligence, vol. 133, p. 108218, 2024.
  11. P. Nakkiran, G. Kaplun, Y. Bansal, T. Yang, B. Barak, and I. Sutskever, “Deep double descent: Where bigger models and more data hurt,” Journal of Statistical Mechanics: Theory and Experiment, vol. 2021, no. 12, p. 124003, 2021.
  12. D. Zhu, J. Chen, X. Shen, X. Li, and M. Elhoseiny, “Minigpt-4: Enhancing vision-language understanding with advanced large language models,” arXiv preprint arXiv:2304.10592, 2023.
  13. L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin, C. Zhang, S. Agarwal, K. Slama, A. Ray et al., “Training language models to follow instructions with human feedback,” Advances in neural information processing systems, vol. 35, pp. 27 730–27 744, 2022.
  14. J. Jiang, K. Zhou, Z. Dong, K. Ye, W. X. Zhao, and J.-R. Wen, “Structgpt: A general framework for large language model to reason over structured data,” 2023.
  15. J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le, D. Zhou et al., “Chain-of-thought prompting elicits reasoning in large language models,” Advances in neural information processing systems, vol. 35, pp. 24 824–24 837, 2022.
  16. L. Wang, B. Huang, Z. Zhao, Z. Tong, Y. He, Y. Wang, Y. Wang, and Y. Qiao, “Videomae v2: Scaling video masked autoencoders with dual masking,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 14 549–14 560.
  17. Z. Xiao, Y. Chen, L. Zhang, J. Yao, Z. Wu, X. Yu, Y. Pan, L. Zhao, C. Ma, X. Liu et al., “Instruction-vit: Multi-modal prompts for instruction learning in vit,” arXiv preprint arXiv:2305.00201, 2023.
  18. S. Ralethe and J. Buys, “Generic overgeneralization in pre-trained language models,” 2022.
  19. C. Collacciani and G. Rambelli, “Interpretation of generalization in masked language models: An investigation straddling quantifiers and generics,” 2023.
  20. Z. Sun, Z. Huang, Q. Zhu, X. Li, and D. Liu, “High-precision motion control method and practice for autonomous driving in complex off-road environments,” in 2016 IEEE Intelligent Vehicles Symposium (IV).   IEEE, 2016, pp. 767–773.
  21. Y. Jiang, H. Yedidsion, S. Zhang, G. Sharon, and P. Stone, “Multi-robot planning with conflicts and synergies,” Autonomous Robots, vol. 43, pp. 2011–2032, 2019.
  22. Y. Xiao, F. Codevilla, A. Gurram, O. Urfalioglu, and A. M. López, “Multimodal end-to-end autonomous driving,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 1, pp. 537–547, 2020.
  23. A. Nguyen, T. Do, M. Tran, B. X. Nguyen, C. Duong, T. Phan, E. Tjiputra, and Q. D. Tran, “Deep federated learning for autonomous driving,” in 2022 IEEE Intelligent Vehicles Symposium (IV).   IEEE, 2022, pp. 1824–1830.
  24. E. Bakopoulou, B. Tillman, and A. Markopoulou, “Fedpacket: A federated learning approach to mobile packet classification,” IEEE Transactions on Mobile Computing, vol. 21, no. 10, pp. 3609–3628, 2022.
  25. Q. Wu, X. Chen, Z. Zhou, and J. Zhang, “Fedhome: Cloud-edge based personalized federated learning for in-home health monitoring,” IEEE Transactions on Mobile Computing, vol. 21, no. 8, pp. 2818–2832, 2022.
  26. X. Jiang, H. Hu, T. On, P. Lai, V. D. Mayyuri, A. Chen, D. M. Shila, A. Larmuseau, R. Jin, C. Borcea, and N. Phan, “Flsys: Toward an open ecosystem for federated learning mobile apps,” IEEE Transactions on Mobile Computing, vol. 23, no. 1, pp. 501–519, 2024.
  27. M.-D. Nguyen, S.-M. Lee, Q.-V. Pham, D. T. Hoang, D. N. Nguyen, and W.-J. Hwang, “Hcfl: A high compression approach for communication-efficient federated learning in very large scale iot networks,” IEEE Transactions on Mobile Computing, vol. 22, no. 11, pp. 6495–6507, 2023.
  28. Y. Xiao, R. Xia, Y. Li, G. Shi, D. N. Nguyen, D. T. Hoang, D. Niyato, and M. Krunz, “Distributed traffic synthesis and classification in edge networks: A federated self-supervised learning approach,” IEEE Transactions on Mobile Computing, vol. 23, no. 2, pp. 1815–1829, 2024.
  29. B. Zhao, X. Liu, W.-N. Chen, and R. H. Deng, “Crowdfl: Privacy-preserving mobile crowdsensing system via federated learning,” IEEE Transactions on Mobile Computing, vol. 22, no. 8, pp. 4607–4619, 2023.
  30. K. Wei, J. Li, M. Ding, C. Ma, H. Su, B. Zhang, and H. V. Poor, “User-level privacy-preserving federated learning: Analysis and performance optimization,” IEEE Transactions on Mobile Computing, vol. 21, no. 9, pp. 3388–3401, 2022.
  31. Y. M. Saputra, D. N. Nguyen, D. T. Hoang, Q.-V. Pham, E. Dutkiewicz, and W.-J. Hwang, “Federated learning framework with straggling mitigation and privacy-awareness for ai-based mobile application services,” IEEE Transactions on Mobile Computing, vol. 22, no. 9, pp. 5296–5312, 2023.
  32. B. Liu, L. Wang, M. Liu, and C.-Z. Xu, “Federated imitation learning: A novel framework for cloud robotic systems with heterogeneous sensor data,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 3509–3516, 2020.
  33. K. Pillutla, K. Malik, A.-R. Mohamed, M. Rabbat, M. Sanjabi, and L. Xiao, “Federated learning with partial model personalization,” in International Conference on Machine Learning.   PMLR, 2022, pp. 17 716–17 758.
  34. Y. Xu, M. Xiao, J. Wu, H. Tan, and G. Gao, “A personalized privacy preserving mechanism for crowdsourced federated learning,” IEEE Transactions on Mobile Computing, vol. 23, no. 2, pp. 1568–1585, 2024.
  35. H. Yu, Z. Chen, X. Zhang, X. Chen, F. Zhuang, H. Xiong, and X. Cheng, “Fedhar: Semi-supervised online learning for personalized federated human activity recognition,” IEEE Transactions on Mobile Computing, vol. 22, no. 6, pp. 3318–3332, 2023.
  36. Z. Ma, Y. Xu, H. Xu, J. Liu, and Y. Xue, “Like attracts like: Personalized federated learning in decentralized edge computing,” IEEE Transactions on Mobile Computing, vol. 23, no. 2, pp. 1080–1096, 2024.
  37. A. Z. Tan, H. Yu, L. Cui, and Q. Yang, “Towards personalized federated learning,” IEEE Transactions on Neural Networks and Learning Systems, 2022, DOI: 10.1109/TNNLS.2022.3160699.
  38. J. Zhang, S. Guo, X. Ma, H. Wang, W. Xu, and F. Wu, “Parameterized knowledge transfer for personalized federated learning,” Advances in Neural Information Processing Systems, vol. 34, pp. 10 092–10 104, 2021.
  39. P. P. Liang, T. Liu, L. Ziyin, R. Salakhutdinov, and L.-P. Morency, “Think locally, act globally: Federated learning with local and global representations,” arXiv preprint arXiv:2001.01523, 2020.
  40. Y. Huang, L. Chu, Z. Zhou, L. Wang, J. Liu, J. Pei, and Y. Zhang, “Personalized cross-silo federated learning on non-iid data,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 9, 2021, pp. 7865–7873, DOI: 10.1609/aaai.v35i9.16960.
  41. D. Bui et al., “Federated user representation learning,” arXiv preprint arXiv:1909.12535, 2019.
  42. A. Fallah, A. Mokhtari, and A. Ozdaglar, “Personalized Federated Learning with Theoretical Guarantees: A Model-Agnostic Meta-Learning Approach,” in NeurIPS, 2020.
  43. L. Collins, H. Hassani, A. Mokhtari, and S. Shakkottai, “Exploiting shared representations for personalized federated learning,” in International Conference on Machine Learning.   PMLR, Jul. 2021, pp. 2089–2099.
  44. Y. Fu, H. Peng, A. Sabharwal, P. Clark, and T. Khot, “Complexity-based prompting for multi-step reasoning,” in The Eleventh International Conference on Learning Representations, 2022.
  45. S. Ren, Z. Wang, H. Zhu, J. Xiao, A. Yuille, and C. Xie, “Rejuvenating image-gpt as strong visual representation learners,” 2023.
  46. J. Wang, Y. Ge, R. Yan, Y. Ge, K. Q. Lin, S. Tsutsui, X. Lin, G. Cai, J. Wu, Y. Shan et al., “All in one: Exploring unified video-language pre-training,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 6598–6608.
  47. X.-A. Bi, K. Chen, S. Jiang, S. Luo, W. Zhou, Z. Xing, L. Xu, Z. Liu, and T. Liu, “Community graph convolution neural network for alzheimer’s disease classification and pathogenetic factors identification,” IEEE Transactions on Neural Networks and Learning Systems, 2023.
  48. M. Chen, A. Radford, R. Child, J. Wu, H. Jun, D. Luan, and I. Sutskever, “Generative pretraining from pixels,” in International conference on machine learning.   PMLR, 2020, pp. 1691–1703.
  49. T. Li, S. Hu, A. Beirami, and V. Smith, “Federated multi-task learning for competing constraints,” arXiv preprint arXiv:2012.04221, 2020.
  50. D. A. E. Acar, Y. Zhao, R. Matas, M. Mattina, P. Whatmough, and V. Saligrama, “Federated learning based on dynamic regularization,” in International Conference on Learning Representations, 2021.
  51. M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth, and B. Schiele, “The cityscapes dataset for semantic urban scene understanding,” in Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
  52. G. J. Brostow, J. Shotton, J. Fauqueur, and R. Cipolla, “Segmentation and recognition using structure from motion point clouds,” in Computer Vision–ECCV 2008: 10th European Conference on Computer Vision, Marseille, France, October 12-18, 2008, Proceedings, Part I 10.   Springer, 2008, pp. 44–57.
  53. C. Yu, C. Gao, J. Wang, G. Yu, C. Shen, and N. Sang, “Bisenet v2: Bilateral network with guided aggregation for real-time semantic segmentation,” International Journal of Computer Vision, vol. 129, pp. 3051–3068, 2021.
  54. V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep convolutional encoder-decoder architecture for image segmentation,” IEEE transactions on pattern analysis and machine intelligence, vol. 39, no. 12, pp. 2481–2495, 2017.
  55. L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.” Journal of machine learning research, vol. 9, no. 11, 2008.
  56. J. Miao, Z. Yang, L. Fan, and Y. Yang, “Fedseg: Class-heterogeneous federated learning for semantic segmentation,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 8042–8052.
Citations (5)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com