Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Characterizing Regional Importance in Cities with Human Mobility Motifs in Metro Networks (2405.04066v1)

Published 7 May 2024 in cs.SI, cs.SY, and eess.SY

Abstract: Uncovering higher-order spatiotemporal dependencies within human mobility networks offers valuable insights into the analysis of urban structures. In most existing studies, human mobility networks are typically constructed by aggregating all trips without distinguishing who takes which specific trip. Instead, we claim individual mobility motifs, higher-order structures generated by daily trips of people, as fundamental units of human mobility networks. In this paper, we propose two network construction frameworks at the level of mobility motifs in characterizing regional importance in cities. Firstly, we enhance the structural dependencies within mobility motifs and proceed to construct mobility networks based on the enhanced mobility motifs. Secondly, taking inspiration from PageRank, we speculate that people would allocate values of importance to destinations according to their trip intentions. A motif-wise network construction framework is proposed based on the established mechanism. Leveraging large-scale metro data across cities, we construct three types of human mobility networks and characterize the regional importance by node importance indicators. Our comparison results suggest that the motif-based mobility network outperforms the classic mobility network, thus highlighting the efficacy of the introduced human mobility motifs. Finally, we demonstrate that the performance in characterizing the regional importance is significantly improved by our motif-wise framework.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (46)
  1. M. Batty, “The size, scale, and shape of cities,” science, vol. 319, no. 5864, pp. 769–771, 2008.
  2. K. Pollock, “Policy: urban physics,” Nature, vol. 531, no. 7594, pp. S64–S66, 2016.
  3. F. Xia, J. Wang, X. Kong, D. Zhang, and Z. Wang, “Ranking station importance with human mobility patterns using subway network datasets,” IEEE Transactions on Intelligent Transportation Systems, vol. 21, no. 7, pp. 2840–2852, 2019.
  4. Z. Zhou, K. Yang, Y. Liang, B. Wang, H. Chen, and Y. Wang, “Predicting collective human mobility via countering spatiotemporal heterogeneity,” IEEE Transactions on Mobile Computing, 2023.
  5. T. Gu, M. Zhu, W. Chen, Z. Huang, R. Maciejewski, and L. Chang, “Structuring mobility transition with an adaptive graph representation,” IEEE Transactions on Computational Social Systems, vol. 5, no. 4, pp. 1121–1132, 2018.
  6. Y. Cheng, C. Li, Y. Zhang, S. He, and J. Chen, “Spatial–temporal urban mobility pattern analysis during covid-19 pandemic,” IEEE Transactions on Computational Social Systems, vol. 11, no. 1, pp. 38–50, 2024.
  7. X. Liu, L. Gong, Y. Gong, and Y. Liu, “Revealing travel patterns and city structure with taxi trip data,” Journal of transport Geography, vol. 43, pp. 78–90, 2015.
  8. J. Tang, S. Zhang, W. Zhang, F. Liu, W. Zhang, and Y. Wang, “Statistical properties of urban mobility from location-based travel networks,” Physica A: Statistical Mechanics and its Applications, vol. 461, pp. 694–707, 2016.
  9. C. Zhong, S. M. Arisona, X. Huang, M. Batty, and G. Schmitt, “Detecting the dynamics of urban structure through spatial network analysis,” International Journal of Geographical Information Science, vol. 28, no. 11, pp. 2178–2199, 2014.
  10. S. Shi, L. Wang, and X. Wang, “Uncovering the spatiotemporal motif patterns in urban mobility networks by non-negative tensor decomposition,” Physica A: Statistical Mechanics and its Applications, vol. 606, p. 128142, 2022.
  11. H. Barbosa, M. Barthelemy, G. Ghoshal, C. R. James, M. Lenormand, T. Louail, R. Menezes, J. J. Ramasco, F. Simini, and M. Tomasini, “Human mobility: Models and applications,” Physics Reports, vol. 734, pp. 1–74, 2018.
  12. Y. Zhou, B. P. L. Lau, C. Yuen, B. Tunçer, and E. Wilhelm, “Understanding urban human mobility through crowdsensed data,” IEEE Communications Magazine, vol. 56, no. 11, pp. 52–59, 2018.
  13. H. Nilforoshan, W. Looi, E. Pierson, B. Villanueva, N. Fishman, Y. Chen, J. Sholar, B. Redbird, D. Grusky, and J. Leskovec, “Human mobility networks reveal increased segregation in large cities,” Nature, pp. 1–7, 2023.
  14. W. Jia, K. Zhao, and S. Zhao, “The hierarchical clustering of human mobility behaviors,” IEEE Transactions on Computational Social Systems, pp. 1–12, 2023.
  15. R. Lambiotte, M. Rosvall, and I. Scholtes, “From networks to optimal higher-order models of complex systems,” Nature Physics, vol. 15, no. 4, pp. 313–320, 2019.
  16. M. Rosvall, A. V. Esquivel, A. Lancichinetti, J. D. West, and R. Lambiotte, “Memory in network flows and its effects on spreading dynamics and community detection,” Nature Communications, vol. 5, no. 1, pp. 1–13, 2014.
  17. C. M. Schneider, V. Belik, T. Couronné, Z. Smoreda, and M. C. González, “Unravelling daily human mobility motifs,” Journal of The Royal Society Interface, vol. 10, no. 84, p. 20130246, 2013.
  18. H. Zhao, X. Xu, Y. Song, D. L. Lee, Z. Chen, and H. Gao, “Ranking users in social networks with motif-based pagerank,” IEEE Transactions on Knowledge and Data Engineering, 2019.
  19. A. R. Benson, D. F. Gleich, and J. Leskovec, “Higher-order organization of complex networks,” Science, vol. 353, no. 6295, pp. 163–166, 2016.
  20. X. Li, R. Cheng, K. C.-C. Chang, C. Shan, C. Ma, and H. Cao, “On analyzing graphs with motif-paths,” Proceedings of the VLDB Endowment, vol. 14, no. 6, pp. 1111–1123, 2021.
  21. R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon, “Network motifs: simple building blocks of complex networks,” Science, vol. 298, no. 5594, pp. 824–827, 2002.
  22. H. Yin, A. R. Benson, J. Leskovec, and D. F. Gleich, “Local higher-order graph clustering,” in Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2017, pp. 555–564.
  23. F. Xia, S. Yu, C. Liu, J. Li, and I. Lee, “Chief: Clustering with higher-order motifs in big networks,” IEEE Transactions on Network Science and Engineering, vol. 9, no. 3, pp. 990–1005, 2022.
  24. P.-Z. Li, L. Huang, C.-D. Wang, J.-H. Lai, and D. Huang, “Community detection by motif-aware label propagation,” ACM Transactions on Knowledge Discovery from Data (TKDD), vol. 14, no. 2, pp. 1–19, 2020.
  25. Y. Gao, H. Zhang, and X. Yu, “Higher-order community detection: On information degeneration and its elimination,” IEEE/ACM Transactions on Networking, 2022.
  26. C. Ma, B.-B. Xiang, H.-S. Chen, M. Small, and H.-F. Zhang, “Detection of core-periphery structure in networks based on 3-tuple motifs,” Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 28, no. 5, p. 053121, 2018.
  27. J. Chen, M. Feng, D. Zhao, C. Xia, and Z. Wang, “Composite effective degree markov chain for epidemic dynamics on higher-order networks,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 53, no. 12, pp. 7415–7426, 2023.
  28. M. Liu, J. Li, Z. Yang, and K. Yang, “Higher-order functional structure exploration in heterogeneous combat network based on operational motif spectral clustering,” IEEE Systems Journal, vol. 17, no. 3, pp. 4279–4290, 2023.
  29. J. Cao, Q. Li, W. Tu, and F. Wang, “Characterizing preferred motif choices and distance impacts,” PloS One, vol. 14, no. 4, p. e0215242, 2019.
  30. R. Su, E. C. McBride, and K. G. Goulias, “Pattern recognition of daily activity patterns using human mobility motifs and sequence analysis,” Transportation Research Part C: Emerging Technologies, vol. 120, p. 102796, 2020.
  31. ——, “Unveiling daily activity pattern differences between telecommuters and commuters using human mobility motifs and sequence analysis,” Transportation Research Part A: Policy and Practice, vol. 147, pp. 106–132, 2021.
  32. Z. Liu, J. Yu, W. Xiong, J. Lu, J. Yang, and Q. Wang, “Using mobile phone data to explore spatial-temporal evolution of home-based daily mobility patterns in shanghai,” in 2016 International Conference on Behavioral, Economic and Socio-cultural Computing (BESC).   IEEE, 2016, pp. 1–6.
  33. S. Jiang, J. Ferreira, and M. C. Gonzalez, “Activity-based human mobility patterns inferred from mobile phone data: A case study of singapore,” IEEE Transactions on Big Data, vol. 3, no. 2, pp. 208–219, 2017.
  34. Y. Chen, N. Xie, H. Xu, X. Chen, and D.-H. Lee, “A multi-context aware human mobility prediction model based on motif-preserving travel preference learning,” IEEE Transactions on Intelligent Transportation Systems, pp. 1–14, 2023.
  35. Q. Xiong, Y. Liu, P. Xie, Y. Wang, and Y. Liu, “Revealing correlation patterns of individual location activity motifs between workdays and day-offs using massive mobile phone data,” Computers, Environment and Urban Systems, vol. 89, p. 101682, 2021.
  36. X. Ling, Z. Huang, C. Wang, F. Zhang, and P. Wang, “Predicting subway passenger flows under different traffic conditions,” PLoS One, vol. 13, no. 8, p. e0202707, 2018.
  37. E. Chen, Z. Ye, C. Wang, and M. Xu, “Subway passenger flow prediction for special events using smart card data,” IEEE Transactions on Intelligent Transportation Systems, vol. 21, no. 3, pp. 1109–1120, 2019.
  38. S. Shi, L. Wang, S. Xu, and X. Wang, “Prediction of intra-urban human mobility by integrating regional functions and trip intentions,” IEEE Transactions on Knowledge and Data Engineering, 2020.
  39. K. He, Z. Xu, P. Wang, L. Deng, and L. Tu, “Congestion avoidance routing based on large-scale social signals,” IEEE Transactions on Intelligent Transportation Systems, vol. 17, no. 9, pp. 2613–2626, 2015.
  40. Y. Xing, J. Lu, and S. Chen, “Weighted complex network analysis of shanghai rail transit system,” Discrete Dynamics in Nature and Society, vol. 2016, 2016.
  41. F. Xia, J. Wang, X. Kong, Z. Wang, J. Li, and C. Liu, “Exploring human mobility patterns in urban scenarios: A trajectory data perspective,” IEEE Communications Magazine, vol. 56, no. 3, pp. 142–149, 2018.
  42. N. Yong, S. Ni, S. Shen, P. Chen, and X. Ji, “Uncovering stable and occasional human mobility patterns: A case study of the beijing subway,” Physica A: Statistical Mechanics and its Applications, vol. 492, pp. 28–38, 2018.
  43. L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation ranking: Bringing order to the web.” Stanford InfoLab, Tech. Rep., 1999.
  44. L. M. Bettencourt, J. Lobo, D. Helbing, C. Kühnert, and G. B. West, “Growth, innovation, scaling, and the pace of life in cities,” Proceedings of the National Academy of Sciences, vol. 104, no. 17, pp. 7301–7306, 2007.
  45. L. M. Bettencourt, “The origins of scaling in cities,” science, vol. 340, no. 6139, pp. 1438–1441, 2013.
  46. J. Raimbault, “Indirect evidence of network effects in a system of cities,” Environment and Planning B: Urban Analytics and City Science, vol. 47, no. 1, pp. 138–155, 2020.

Summary

We haven't generated a summary for this paper yet.