Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generalized Langevin dynamics for single beads in linear elastic network (2405.04019v2)

Published 7 May 2024 in cond-mat.soft and cond-mat.stat-mech

Abstract: We derive generalized Langevin equations (GLEs) for single beads in linear elastic networks. In particular, the derivations of the GLEs are conducted without employing normal modes, resulting in two distinct representations in terms of resistance and mobility kernels. The fluctuation-dissipation relations are also confirmed for both GLEs. Subsequently, we demonstrate that these two representations are interconnected via Laplace transforms. Furthermore, another GLE is derived by utilizing a projection operator method, and it is shown that the equation obtained through the projection scheme is consistent with the GLE with the resistance kernel. As simple examples, the general theory is applied to the Rouse model and the ring polymer, where the GLEs with the resistance and mobility kernels are explicitly derived for arbitrary positions of the tagged bead in these models. Finally, the GLE with the mobility kernel is also derived for the elastic network with hydrodynamic interactions under the pre-averaging approximation.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (21)
  1. M. M. Tirion, Phys. Rev. Lett. 77, 1905 (1996).
  2. P. E. Rouse, J. Chem. Phys. 21, 1272 (1953).
  3. M. Doi and S. F. Edwards, The Theory of Polymer Dynamics (Oxford University Press, Oxford, 1986).
  4. G. Shi and D. Thirumalai, Nat. Commun. 10, 3894 (2019).
  5. S. C. Kou and X. S. Xie, Phys. Rev. Lett. 93, 180603 (2004).
  6. D. Panja, Journal of Statistical Mechanics: Theory and Experiment 2010, L02001 (2010a).
  7. D. Panja, J. Stat. Mech. 2010, P06011 (2010b).
  8. H. Vandebroek and C. Vanderzande, J. Stat. Phys. 167, 14 (2017).
  9. T. Sakaue, Phys. Rev. E 87, 040601 (2013).
  10. T. Saito and T. Sakaue, Phys. Rev. E 92, 012601 (2015).
  11. J.-P. Hansen and I. R. McDonald, Theory of Simple Liquids (Elsevier, New York, 1990).
  12. J. K. G. Dhont, An Introduction to Dynamics of Colloids (Elsevier, Amsterdam, 1996).
  13. T. Miyaguchi, Phys. Rev. Res. 4, 043062 (2022).
  14. N. Pottier, Physica A 317, 371 (2003).
  15. R. A. Horn and C. R. Johnson, Matrix analysis (Cambridge University Press, New York, 2012).
  16. D. J Evans and G. P Morriss, Statistical mechanics of nonequilbrium liquids (Cambridge University Press, Cambridge, 2008).
  17. W. Feller, An Introduction to Probability Theory and its Applications, 3rd ed., Vol. I (Wiley, New York, 1968).
  18. A. Amitai and D. Holcman, Phys. Rev. E 88, 052604 (2013).
  19. W. Deng and E. Barkai, Phys. Rev. E 79, 011112 (2009).
  20. T. Miyaguchi, Phys. Rev. E 96, 042501 (2017).
  21. P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations (Springer, Berlin, 2011).

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com