Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Roadside Units Assisted Localized Automated Vehicle Maneuvering: An Offline Reinforcement Learning Approach (2405.03935v2)

Published 7 May 2024 in eess.SY and cs.SY

Abstract: Traffic intersections present significant challenges for the safe and efficient maneuvering of connected and automated vehicles (CAVs). This research proposes an innovative roadside unit (RSU)-assisted cooperative maneuvering system aimed at enhancing road safety and traveling efficiency at intersections for CAVs. We utilize RSUs for real-time traffic data acquisition and train an offline reinforcement learning (RL) algorithm based on human driving data. Evaluation results obtained from hardware-in-loop autonomous driving simulations show that our approach employing the twin delayed deep deterministic policy gradient and behavior cloning (TD3+BC), achieves performance comparable to state-of-the-art autonomous driving systems in terms of safety measures while significantly enhancing travel efficiency by up to 17.38% in intersection areas. This paper makes a pivotal contribution to the field of intelligent transportation systems, presenting a breakthrough solution for improving urban traffic flow and safety at intersections.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (19)
  1. J. Yuan and M. Abdel-Aty, “Approach-level real-time crash risk analysis for signalized intersections,” Accident Analysis & Prevention, vol. 119, pp. 274–289, 2018.
  2. Statistics on intersection accidents. [Online]. Available: https://autoaccident.com/statistics-on-intersection-accidents.html
  3. B. Qian, H. Zhou, F. Lyu, J. Li, T. Ma, and F. Hou, “Toward collision-free and efficient coordination for automated vehicles at unsignalized intersection,” IEEE Internet of Things Journal, vol. 6, no. 6, pp. 10 408–10 420, 2019.
  4. N. Pourjafari, A. Ghafari, and A. Ghaffari, “Navigating unsignalized intersections: A predictive approach for safe and cautious autonomous driving,” IEEE Transactions on Intelligent Vehicles, vol. 9, no. 1, pp. 269–278, 2024.
  5. Z. Li, K. Wang, T. Yu, and K. Sakaguchi, “Het-sdvn: SDN-based radio resource management of heterogeneous V2X for cooperative perception,” IEEE Access, vol. 11, pp. 76 255–76 268, 2023.
  6. D. Suo, B. Mo, J. Zhao, and S. E. Sarma, “Proof of travel for trust-based data validation in V2I communication,” IEEE Internet of Things Journal, vol. 10, no. 11, pp. 9565–9584, 2023.
  7. A. Caillot, S. Ouerghi, P. Vasseur, R. Boutteau, and Y. Dupuis, “Survey on cooperative perception in an automotive context,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 9, pp. 14 204–14 223, 2022.
  8. K. Maruta, M. Takizawa, R. Fukatsu, Y. Wang, Z. Li, and K. Sakaguchi, “Blind-spot visualization via AR glasses using millimeter-wave V2X for safe driving,” in 2021 IEEE 94th Vehicular Technology Conference (VTC2021-Fall), 2021, pp. 1–5.
  9. C. Zhang, J. Wei, S. Qu, X. She, J. Dai, S. Ou, and Z. Wang, “A roadside cooperative perception system with multi-camera fusion at an intersection,” in 2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), 2023, pp. 642–649.
  10. Z. Wang, G. Wu, and M. J. Barth, “Cooperative eco-driving at signalized intersections in a partially connected and automated vehicle environment,” IEEE Transactions on Intelligent Transportation Systems, vol. 21, no. 5, pp. 2029–2038, 2020.
  11. H. Pei, Y. Zhang, Q. Tao, S. Feng, and L. Li, “Distributed cooperative driving in multi-intersection road networks,” IEEE Transactions on Vehicular Technology, vol. 70, no. 6, pp. 5390–5403, 2021.
  12. Z. Wang, K. Han, and P. Tiwari, “Digital twin-assisted cooperative driving at non-signalized intersections,” IEEE Transactions on Intelligent Vehicles, vol. 7, no. 2, pp. 198–209, 2022.
  13. K. Wang, Z. Li, K. Nonomura, T. Yu, K. Sakaguchi, O. Hashash, and W. Saad, “Smart mobility digital twin based automated vehicle navigation system: A proof of concept,” IEEE Transactions on Intelligent Vehicles, pp. 1–14, 2024.
  14. K. Wang, T. Yu, Z. Li, K. Sakaguchi, O. Hashash, and W. Saad, “Digital twins for autonomous driving: A comprehensive implementation and demonstration,” arXiv preprint arXiv:2401.08653, 2023.
  15. S. Levine, A. Kumar, G. Tucker, and J. Fu, “Offline reinforcement learning: Tutorial, review, and perspectives on open problems,” arXiv preprint arXiv:2005.01643, 2020.
  16. S. Fujimoto, H. Hoof, and D. Meger, “Addressing function approximation error in actor-critic methods,” in International conference on machine learning, 2018, pp. 1587–1596.
  17. F. Torabi, G. Warnell, and P. Stone, “Behavioral cloning from observation,” in Proceedings of the 27th International Joint Conference on Artificial Intelligence, 2018, pp. 4950–4957.
  18. S. Fujimoto and S. S. Gu, “A minimalist approach to offline reinforcement learning,” Advances in neural information processing systems, vol. 34, pp. 20 132–20 145, 2021.
  19. Autoware. [Online]. Available: https://autoware.org/.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Kui Wang (44 papers)
  2. Changyang She (43 papers)
  3. Zongdian Li (10 papers)
  4. Tao Yu (282 papers)
  5. Yonghui Li (241 papers)
  6. Kei Sakaguchi (35 papers)

Summary

We haven't generated a summary for this paper yet.