Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Thin Film Lithium Niobate Near-Infrared Platform for Multiplexing Quantum Nodes (2405.03912v1)

Published 7 May 2024 in physics.optics, physics.app-ph, and quant-ph

Abstract: Practical quantum networks will require quantum nodes consisting of many memory qubits. This in turn will increase the complexity of the photonic circuits needed to control each qubit and will require strategies to multiplex memories and overcome the inhomogeneous distribution of their transition frequencies. Integrated photonics operating at visible to near-infrared (VNIR) wavelength range, compatible with the transition frequencies of leading quantum memory systems, can provide solutions to these needs. In this work, we realize a VNIR thin-film lithium niobate (TFLN) integrated photonics platform with the key components to meet these requirements. These include low-loss couplers ($<$ 1 dB/facet), switches ($>$ 20 dB extinction), and high-bandwidth electro-optic modulators ($>$ 50 GHz). With these devices we demonstrate high-efficiency and CW-compatible frequency shifting ($>$ 50 $\%$ efficiency at 15 GHz), as well as simultaneous laser amplitude and frequency control through a nested modulator structure. Finally, we highlight an architecture for multiplexing quantum memories using the demonstrated TFLN components, and outline how this platform can enable a 2-order of magnitude improvement in entanglement rates over single memory nodes. Our results demonstrate that TFLN can meet the necessary performance and scalability benchmarks to enable large-scale quantum nodes.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (58)
  1. \bibcommenthead
  2. Kimble, H. J. The quantum internet (2008).
  3. Quantum internet: A vision for the road ahead (2018).
  4. Quantum networks with neutral atom processing nodes (2023).
  5. Hensen, B. et al. Loophole-free bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526 (2015). 10.1038/nature15759 .
  6. Hermans, S. L. et al. Qubit teleportation between non-neighbouring nodes in a quantum network. Nature 605 (2022). 10.1038/s41586-022-04697-y .
  7. van Leent, T. et al. Entangling single atoms over 33 km telecom fibre. Nature 607 (2022). 10.1038/s41586-022-04764-4 .
  8. Delteil, A. et al. Generation of heralded entanglement between distant hole spins. Nature Physics 12 (2016). 10.1038/nphys3605 .
  9. Knaut, C. M. et al. Entanglement of nanophotonic quantum memory nodes in a telecommunication network (2023) .
  10. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414 (2001). 10.1038/35106500 .
  11. Bennett, C. H. et al. Purification of noisy entanglement and faithful teleportation via noisy channels. Physical Review Letters 76 (1996). 10.1103/PhysRevLett.76.722 .
  12. Narrow-linewidth homogeneous optical emitters in diamond nanostructures via silicon ion implantation. Physical Review Applied 5, 044010 (2016). 10.1103/PhysRevApplied.5.044010 .
  13. Zeng, B. et al. Cryogenic packaging of nanophotonic devices with a low coupling loss ¡ 1 db. Applied Physics Letters 123, 161106 (2023). URL https://doi.org/10.1063/5.0170324. 10.1063/5.0170324 .
  14. Mohanty, A. et al. Reconfigurable nanophotonic silicon probes for sub-millisecond deep-brain optical stimulation. Nature Biomedical Engineering 4 (2020). 10.1038/s41551-020-0516-y .
  15. Sacher, W. D. et al. Visible-light silicon nitride waveguide devices and implantable neurophotonic probes on thinned 200 mm silicon wafers. Optics Express 27, 37400 (2019). 10.1364/OE.27.037400 .
  16. Dong, M. et al. High-speed programmable photonic circuits in a cryogenically compatible, visible–near-infrared 200 mm cmos architecture. Nature Photonics 16, 59–65 (2022). 10.1038/s41566-021-00903-x .
  17. Zhang, C. et al. Integrated photonics beyond communications. Applied Physics Letters 123, 230501 (2023). URL https://doi.org/10.1063/5.0184677. 10.1063/5.0184677 .
  18. Zhu, D. et al. Integrated photonics on thin-film lithium niobate. Advances in Optics and Photonics 13 (2021). 10.1364/aop.411024 .
  19. Ultra-low-loss integrated visible photonics using thin-film lithium niobate. Optica 6 (2019). 10.1364/optica.6.000380 .
  20. Renaud, D. et al. Sub-1 volt and high-bandwidth visible to near-infrared electro-optic modulators. Nature Communications 14 (2023). 10.1038/s41467-023-36870-w .
  21. Christen, I. et al. An integrated photonic engine for programmable atomic control (2022) .
  22. Sund, P. I. et al. High-speed thin-film lithium niobate quantum processor driven by a solid-state quantum emitter. Science Advances 9 (2023). 10.1126/sciadv.adg7268 .
  23. 100 ghz bandwidth, 1 volt integrated electro-optic mach–zehnder modulator at near-ir wavelengths. Optica 10 (2023). 10.1364/optica.484549 .
  24. Burek, M. J. et al. Fiber-coupled diamond quantum nanophotonic interface. Physical Review Applied 8 (2017). 10.1103/PhysRevApplied.8.024026 .
  25. Khan, S. et al. Low-loss, high-bandwidth fiber-to-chip coupling using capped adiabatic tapered fibers. APL Photonics 5 (2020). 10.1063/1.5145105 .
  26. Tiecke, T. G. et al. Efficient fiber-optical interface for nanophotonic devices. Optica 2 (2015). 10.1364/optica.2.000070 .
  27. He, L. et al. Low-loss fiber-to-chip interface for lithium niobate photonic integrated circuits. Optics Letters 44 (2019). 10.1364/ol.44.002314 .
  28. Efficient self-imaging grating couplers on a lithium-niobate-on-insulator platform at near-visible and telecom wavelengths. Optics Express 29 (2021). 10.1364/oe.428138 .
  29. Hu, C. et al. High-efficient coupler for thin-film lithium niobate waveguide devices. Optics Express 29 (2021). 10.1364/oe.416492 .
  30. Adiabatic couplers in soi waveguides (2010).
  31. Yun, H. et al. 2x2 broadband adiabatic 3-db couplers on soi strip waveguides for te and tm modes (2015).
  32. Holzgrafe, J. et al. Relaxation of the electro-optic response in thin-film lithium niobate modulators. Opt. Express 32, 3619–3631 (2024). URL https://opg.optica.org/oe/abstract.cfm?URI=oe-32-3-3619. 10.1364/OE.507536 .
  33. Nguyen, C. T. et al. An integrated nanophotonic quantum register based on silicon-vacancy spins in diamond. Physical Review B 100, 165428 (2019). 10.1103/PhysRevB.100.165428 .
  34. Integrated quantum photonics with silicon carbide: Challenges and prospects. PRX Quantum 1 (2020). 10.1103/PRXQuantum.1.020102 .
  35. Quantum nanophotonics with group iv defects in diamond. Nature Communications 10, 5625 (2019). 10.1038/s41467-019-13332-w .
  36. Synthesizing optical spectra using computer-generated holography techniques. New Journal of Physics 23 (2021). 10.1088/1367-2630/abe973 .
  37. Broadband optical serrodyne frequency shifting. Optics Letters 35 (2010). 10.1364/ol.35.000745 .
  38. Wideband, efficient optical serrodyne frequency shifting with a phase modulator and a nonlinear transmission line. Optics Express 17 (2009). 10.1364/oe.17.019235 .
  39. Serrodyne frequency translation of continuous optical signals using ultrawide-band electrical sawtooth waveforms. IEEE Journal of Quantum Electronics 41 (2005). 10.1109/JQE.2005.858467 .
  40. Sinclair, N. et al. Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control. Physical Review Letters 113 (2014). 10.1103/PhysRevLett.113.053603 .
  41. Saglamyurek, E. et al. An integrated processor for photonic quantum states using a broadband light-matter interface. New Journal of Physics 16 (2014). 10.1088/1367-2630/16/6/065019 .
  42. Breaking voltage–bandwidth limits in integrated lithium niobate modulators using micro-structured electrodes. Optica 8 (2021). 10.1364/optica.416155 .
  43. Ding, R. et al. High-speed silicon modulator with slow-wave electrodes and fully independent differential drive. Journal of Lightwave Technology 32 (2014). 10.1109/JLT.2014.2323954 .
  44. Conductor loss of capacitively loaded slow wave electrodes for high-speed photonic devices. Journal of Lightwave Technology 29 (2011). 10.1109/JLT.2010.2091624 .
  45. Machielse, B. et al. Quantum interference of electromechanically stabilized emitters in nanophotonic devices. Physical Review X 9, 031022 (2019). 10.1103/PhysRevX.9.031022 .
  46. Chen, X. et al. All-electronic 100-ghz bandwidth digital-to-analog converter generating pam signals up to 190 gbaud. Journal of Lightwave Technology 35 (2017). 10.1109/JLT.2016.2614126 .
  47. Tutorial on narrow linewidth tunable semiconductor lasers using si/iii-v heterogeneous integration. APL Photonics 4, 111101 (2019). URL https://doi.org/10.1063/1.5124254. 10.1063/1.5124254 .
  48. Shams-Ansari, A. et al. Electrically pumped laser transmitter integrated on thin-film lithium niobate. Optica 9, 408–411 (2022). URL https://opg.optica.org/optica/abstract.cfm?URI=optica-9-4-408. 10.1364/OPTICA.448617 .
  49. Henry, C. H. Theory of the linewidth of semiconductor lasers. IEEE Journal of Quantum Electronics 18 (1982). 10.1109/JQE.1982.1071522 .
  50. Diode Lasers and Photonic Integrated Circuits (2012).
  51. Serrodyne optical frequency translation with high sideband suppression. Journal of Lightwave Technology 6 (1988). 10.1109/50.3974 .
  52. Spectral shearing of quantum light pulses by electro-optic phase modulation. Physical Review Letters 118, 023601 (2017). URL https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.118.023601. 10.1103/PHYSREVLETT.118.023601/FIGURES/3/MEDIUM .
  53. Zhu, D. et al. Spectral control of nonclassical light pulses using an integrated thin-film lithium niobate modulator. Light: Science and Applications 11 (2022). 10.1038/s41377-022-01029-7 .
  54. Reduction in dc-drift in linbo3-based electro-optical modulator. Photonics 8 (2021). 10.3390/photonics8120571 .
  55. Tchernij, S. D. et al. Single-photon-emitting optical centers in diamond fabricated upon sn implantation. ACS Photonics 4 (2017). 10.1021/acsphotonics.7b00904 .
  56. Doherty, M. W. et al. The nitrogen-vacancy colour centre in diamond (2013).
  57. Bhaskar, M. K. et al. Experimental demonstration of memory-enhanced quantum communication. Nature 580 (2020). 10.1038/s41586-020-2103-5 .
  58. High-speed electrooptic modulator characterization using optical spectrum analysis. Journal of Lightwave Technology 21 (2003). 10.1109/JLT.2003.818162 .

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com