Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Novel Cross-band CSI Prediction Scheme for Multi-band Fingerprint based Localization (2405.03842v1)

Published 6 May 2024 in cs.NI and cs.AI

Abstract: Because of the advantages of computation complexity compared with traditional localization algorithms, fingerprint based localization is getting increasing demand. Expanding the fingerprint database from the frequency domain by channel reconstruction can improve localization accuracy. However, in a mobility environment, the channel reconstruction accuracy is limited by the time-varying parameters. In this paper, we proposed a system to extract the time-varying parameters based on space-alternating generalized expectation maximization (SAGE) algorithm, then used variational auto-encoder (VAE) to reconstruct the channel state information on another channel. The proposed scheme is tested on the data generated by the deep-MIMO channel model. Mathematical analysis for the viability of our system is also shown in this paper.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (21)
  1. F. Liu, Y. Cui, C. Masouros, J. Xu, T. X. Han, Y. C. Eldar, and S. Buzzi, “Integrated sensing and communications: Toward dual-functional wireless networks for 6g and beyond,” IEEE Journal on Selected Areas in Communications, vol. 40, no. 6, pp. 1728–1767, 2022.
  2. K. NonAlinsavath, V. Khieovongphachanh, P. Southisombath, A. Chaisang, S. Phomkeona, K. Luangxaysana, S. Suwan, and S. Promwong, “Location context awareness system for specific positioning based on received signal strength for android platform system,” in 2023 9th International Conference on Engineering, Applied Sciences, and Technology (ICEAST), 2023, pp. 93–96.
  3. S. Xu and W. Chou, “An improved indoor localization method for mobile robot based on wifi fingerprint and amcl,” in 2017 10th International Symposium on Computational Intelligence and Design (ISCID), vol. 1, 2017, pp. 324–329.
  4. X. Guo and N. Ansari, “Localization by fusing a group of fingerprints via multiple antennas in indoor environment,” IEEE Transactions on Vehicular Technology, vol. 66, no. 11, pp. 9904–9915, 2017.
  5. Y. Xie, Z. Li, and M. Li, “Precise power delay profiling with commodity wi-fi,” IEEE Transactions on Mobile Computing, vol. 18, no. 6, pp. 1342–1355, 2019.
  6. N. Souzandeh and J. Pourahmadazar, “Classification of frequency bands in the joint millimeter-wave sensing and communication system (jscs): A comprehensive analysis,” Ph.D. dissertation, Institut National de la Recherche Scientifique [Québec], 2023.
  7. R. Yuan, K. Huang, P. Yang, and S. Zhang, “A variational auto-encoder enabled multi-band channel prediction scheme for indoor localization,” arXiv preprint arXiv:2309.12200, 2023.
  8. X. Shen, Y. Liao, X. Dai, M. Zhao, K. Liu, and D. Wang, “Joint channel estimation and decoding design for 5g-enabled v2v channel,” China Communications, vol. 15, no. 7, pp. 39–46, 2018.
  9. Q. Shi, Y. Liu, S. Zhang, S. Xu, and V. K. Lau, “A unified channel estimation framework for stationary and non-stationary fading environments,” IEEE Transactions on Communications, vol. 69, no. 7, pp. 4937–4952, 2021.
  10. S. Cai, L. Chen, Y. Chen, H. Yin, and W. Wang, “Pulse-based isac: Data recovery and ranging estimation for multi-path fading channels,” IEEE Transactions on Communications, vol. 71, no. 8, pp. 4819–4838, 2023.
  11. Y. Wan, A. Liu, Q. Hu, M. Zhang, and Y. Cai, “A two-stage global estimation scheme for multiband delay estimation in wireless localization,” in 2022 IEEE Global Communications Conference (GLOBECOM), 2022, pp. 735–740.
  12. Z. Zhou, C.-X. Wang, L. Zhang, J. Huang, L. Xin, E.-H. Aggoune, and Y. Miao, “A novel sage algorithm for estimating parameters of wideband spatial non-stationary wireless channels with antenna polarization,” IEEE Transactions on Antennas and Propagation, vol. PP, pp. 1–1, 09 2023.
  13. K. Qian, C. Wu, Y. Zhang, G. Zhang, Z. Yang, and Y. Liu, “Widar2.0: Passive human tracking with a single wi-fi link,” in Proceedings of the 16th Annual International Conference on Mobile Systems, Applications, and Services, ser. (MobiSys).   New York, NY, USA: Association for Computing Machinery, 2018, p. 350–361. [Online]. Available: https://doi.org/10.1145/3210240.3210314
  14. A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from incomplete data via the em algorithm,” Journal of the royal statistical society: series B (methodological), vol. 39, no. 1, pp. 1–22, 1977.
  15. X. F. Yin, L. Ouyang, and H. Wang, “Performance comparison of sage and music for channel estimation in direction-scan measurements,” IEEE Access, vol. 4, pp. 1163–1174, 2016. [Online]. Available: https://api.semanticscholar.org/CorpusID:27030716
  16. X. Yin, Y. He, Z. Song, M.-D. Kim, and H. K. Chung, “A sliding-correlator-based sage algorithm for mm-wave wideband channel parameter estimation,” in The 8th European Conference on Antennas and Propagation (EuCAP 2014), 2014, pp. 625–629.
  17. B. H. Fleury, M. Tschudin, R. Heddergott, D. Dahlhaus, and K. I. Pedersen, “Channel parameter estimation in mobile radio environments using the sage algorithm,” IEEE Journal on selected areas in communications, vol. 17, no. 3, pp. 434–450, 1999.
  18. Eberhart and Y. Shi, “Particle swarm optimization: developments, applications and resources,” in Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546), vol. 1, 2001, pp. 81–86 vol. 1.
  19. L. Liu, J. Jin, and S. Xiong, “Performance optimization of polarized mimo relay channels based on the cost 2100 channel model,” IEEE Antennas and Wireless Propagation Letters, vol. 21, no. 6, pp. 1188–1192, 2022.
  20. N. Hansen, “The cma evolution strategy: A tutorial,” arXiv preprint arXiv:1604.00772, 2016.
  21. A. Alkhateeb, “Deepmimo: A generic deep learning dataset for millimeter wave and massive mimo applications,” arXiv preprint arXiv:1902.06435, 2019.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com