Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Near-optimal decoding algorithm for color codes using Population Annealing (2405.03776v1)

Published 6 May 2024 in quant-ph

Abstract: The development and use of large-scale quantum computers relies on integrating quantum error-correcting (QEC) schemes into the quantum computing pipeline. A fundamental part of the QEC protocol is the decoding of the syndrome to identify a recovery operation with a high success rate. In this work, we implement a decoder that finds the recovery operation with the highest success probability by mapping the decoding problem to a spin system and using Population Annealing to estimate the free energy of the different error classes. We study the decoder performance on a 4.8.8 color code lattice under different noise models, including code capacity with bit-flip and depolarizing noise, and phenomenological noise, which considers noisy measurements, with performance reaching near-optimal thresholds. This decoding algorithm can be applied to a wide variety of stabilizer codes, including surface codes and quantum low-density parity-check (qLDPC) codes.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (45)
  1. J. Clarke and F. K. Wilhelm, Superconducting quantum bits, Nature 453, 1031 (2008).
  2. G. S. Paraoanu, Recent Progress in Quantum Simulation Using Superconducting Circuits, Journal of Low Temperature Physics 175, 633 (2014).
  3. G. Wendin, Quantum information processing with superconducting circuits: a review, Reports on Progress in Physics 80, 106001 (2017).
  4. J. I. Cirac and P. Zoller, Quantum computations with cold trapped ions, Phys. Rev. Lett. 74, 4091 (1995).
  5. H. Häffner, C. F. Roos, and R. Blatt, Quantum computing with trapped ions, Physics reports 469, 155 (2008).
  6. K. R. Brown, J. Kim, and C. Monroe, Co-designing a scalable quantum computer with trapped atomic ions, npj Quantum Information 2, 1 (2016).
  7. M. Saffman, T. G. Walker, and K. Mølmer, Quantum information with Rydberg atoms, Rev. Mod. Phys. 82, 2313 (2010).
  8. S. E. Anderson, K. Younge, and G. Raithel, Trapping Rydberg atoms in an optical lattice, Phys. Rev. Lett. 107, 263001 (2011).
  9. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2000).
  10. B. M. Terhal, Quantum error correction for quantum memories, Rev. Mod. Phys. 87, 307 (2015).
  11. D. Gottesman, Stabilizer codes and quantum error correction (California Institute of Technology, 1997).
  12. A. Kitaev, Fault-tolerant quantum computation by anyons, Ann. Phys. 303, 2 (2003).
  13. H. Bombin and M. A. Martin-Delgado, Topological quantum distillation, Physical Review Letters 97, 180501 (2006).
  14. H. Bombin and M. A. Martin-Delgado, Topological Computation without Braiding, Physical Review Letters 98, 160502 (2007).
  15. D. Gottesman, Fault-Tolerant Quantum Computation with Constant Overhead (2014), arXiv:1310.2984 [quant-ph] .
  16. A. A. Kovalev and L. P. Pryadko, Fault tolerance of quantum low-density parity check codes with sublinear distance scaling, Phys. Rev. A 87, 020304 (2013).
  17. N. P. Breuckmann and J. N. Eberhardt, Quantum Low-Density Parity-Check Codes, PRX Quantum 2, 040101 (2021).
  18. D. Aharonov and M. Ben-Or, Fault-tolerant quantum computation with constant error rate, SIAM Journal on Computing 38, 1207 (2008).
  19. P. W. Shor, Fault-tolerant quantum computation, in Proceedings of 37th Conference on Foundations of Computer Science (IEEE, 1996) p. 56.
  20. J. Preskill, Reliable quantum computers, Proc. R. Soc. Lond. A. 454, 385 (1998).
  21. H. G. Katzgraber, H. Bombín, and M. A. Martin-Delgado, Error threshold for color codes and random three-body Ising models, Physical Review Letters 103, 090501 (2009).
  22. P. Sarvepalli and R. Raussendorf, Efficient decoding of topological color codes, Phys. Rev. A 85, 022317 (2012).
  23. A. M. Stephens, Efficient fault-tolerant decoding of topological color codes (2014), arXiv:1402.3037 .
  24. N. Maskara, A. Kubica, and T. Jochym-O’Connor, Advantages of versatile neural-network decoding for topological codes, Physical Review A 99, 052351 (2019).
  25. N. Delfosse, Decoding color codes by projection onto surface codes, Physical Review A 89, 012317 (2014).
  26. N. Delfosse and N. H. Nickerson, Almost-linear time decoding algorithm for topological codes, Quantum 5, 595 (2021).
  27. N. Delfosse and G. Zémor, Linear-time maximum likelihood decoding of surface codes over the quantum erasure channel, Physical Review Research 2, 033042 (2020).
  28. A. Kubica and J. Preskill, Cellular-Automaton Decoders with Provable Thresholds for Topological Codes, Physical Review Letters 123, 020501 (2019).
  29. A. Kubica and N. Delfosse, Efficient color code decoders in d≥2𝑑2d\geq 2italic_d ≥ 2 dimensions from toric code decoders, Quantum 7, 929 (2023).
  30. C. Chamberland and P. Ronagh, Deep neural decoders for near term fault-tolerant experiments, Quantum Science and Technology 3, 044002 (2018).
  31. C. T. Chubb, General tensor network decoding of 2D Pauli codes (2021), arXiv:2101.04125 .
  32. P. Parrado-Rodríguez, M. Rispler, and M. Müller, Rescaling decoder for two-dimensional topological quantum color codes on 4.8.8 lattices, Phys. Rev. A 106, 032431 (2022).
  33. S. Kirkpatrick, C. D. Gelatt Jr, and M. P. Vecchi, Optimization by simulated annealing, Science 220, 671 (1983).
  34. Y. Takada, Y. Takeuchi, and K. Fujii, Ising model formulation for highly accurate topological color codes decoding, Physical Review Research 6, 013092 (2024).
  35. M. Ohzeki, Locations of multicritical points for spin glasses on regular lattices, Physical Review E 79, 021129 (2009a).
  36. M. Ohzeki, Accuracy thresholds of topological color codes on the hexagonal and square-octagonal lattices, Physical Review E 80, 011141 (2009b).
  37. K. Hukushima and Y. Iba, Population annealing and its application to a spin glass, in AIP Conference Proceedings, Vol. 690 (American Institute of Physics, 2003) pp. 200–206.
  38. J. Machta, Population annealing with weighted averages: A Monte Carlo method for rough free-energy landscapes, Physical Review E 82, 026704 (2010).
  39. S. Aaronson and D. Gottesman, Improved simulation of stabilizer circuits, Physical Review A 70, 052328 (2004).
  40. C. P. Robert, G. Casella, and G. Casella, Monte Carlo statistical methods, Vol. 2 (Springer, 1999).
  41. D. Gessert, W. Janke, and M. Weigel, Resampling schemes in population annealing: Numerical and theoretical results, Physical Review E 108, 065309 (2023).
  42. P. L. Ebert, D. Gessert, and M. Weigel, Weighted averages in population annealing: Analysis and general framework, Physical Review E 106, 045303 (2022).
  43. J. Houdayer, A cluster Monte Carlo algorithm for 2-dimensional spin glasses, The European Physical Journal B-Condensed Matter and Complex Systems 22, 479 (2001).
  44. Z. Zhu, A. J. Ochoa, and H. G. Katzgraber, Efficient cluster algorithm for spin glasses in any space dimension, Physical Review Letters 115, 077201 (2015).
  45. M. Weigel, Performance potential for simulating spin models on GPU, Journal of Computational Physics 231, 3064 (2012).

Summary

We haven't generated a summary for this paper yet.