Near-optimal decoding algorithm for color codes using Population Annealing (2405.03776v1)
Abstract: The development and use of large-scale quantum computers relies on integrating quantum error-correcting (QEC) schemes into the quantum computing pipeline. A fundamental part of the QEC protocol is the decoding of the syndrome to identify a recovery operation with a high success rate. In this work, we implement a decoder that finds the recovery operation with the highest success probability by mapping the decoding problem to a spin system and using Population Annealing to estimate the free energy of the different error classes. We study the decoder performance on a 4.8.8 color code lattice under different noise models, including code capacity with bit-flip and depolarizing noise, and phenomenological noise, which considers noisy measurements, with performance reaching near-optimal thresholds. This decoding algorithm can be applied to a wide variety of stabilizer codes, including surface codes and quantum low-density parity-check (qLDPC) codes.
- J. Clarke and F. K. Wilhelm, Superconducting quantum bits, Nature 453, 1031 (2008).
- G. S. Paraoanu, Recent Progress in Quantum Simulation Using Superconducting Circuits, Journal of Low Temperature Physics 175, 633 (2014).
- G. Wendin, Quantum information processing with superconducting circuits: a review, Reports on Progress in Physics 80, 106001 (2017).
- J. I. Cirac and P. Zoller, Quantum computations with cold trapped ions, Phys. Rev. Lett. 74, 4091 (1995).
- H. Häffner, C. F. Roos, and R. Blatt, Quantum computing with trapped ions, Physics reports 469, 155 (2008).
- K. R. Brown, J. Kim, and C. Monroe, Co-designing a scalable quantum computer with trapped atomic ions, npj Quantum Information 2, 1 (2016).
- M. Saffman, T. G. Walker, and K. Mølmer, Quantum information with Rydberg atoms, Rev. Mod. Phys. 82, 2313 (2010).
- S. E. Anderson, K. Younge, and G. Raithel, Trapping Rydberg atoms in an optical lattice, Phys. Rev. Lett. 107, 263001 (2011).
- M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2000).
- B. M. Terhal, Quantum error correction for quantum memories, Rev. Mod. Phys. 87, 307 (2015).
- D. Gottesman, Stabilizer codes and quantum error correction (California Institute of Technology, 1997).
- A. Kitaev, Fault-tolerant quantum computation by anyons, Ann. Phys. 303, 2 (2003).
- H. Bombin and M. A. Martin-Delgado, Topological quantum distillation, Physical Review Letters 97, 180501 (2006).
- H. Bombin and M. A. Martin-Delgado, Topological Computation without Braiding, Physical Review Letters 98, 160502 (2007).
- D. Gottesman, Fault-Tolerant Quantum Computation with Constant Overhead (2014), arXiv:1310.2984 [quant-ph] .
- A. A. Kovalev and L. P. Pryadko, Fault tolerance of quantum low-density parity check codes with sublinear distance scaling, Phys. Rev. A 87, 020304 (2013).
- N. P. Breuckmann and J. N. Eberhardt, Quantum Low-Density Parity-Check Codes, PRX Quantum 2, 040101 (2021).
- D. Aharonov and M. Ben-Or, Fault-tolerant quantum computation with constant error rate, SIAM Journal on Computing 38, 1207 (2008).
- P. W. Shor, Fault-tolerant quantum computation, in Proceedings of 37th Conference on Foundations of Computer Science (IEEE, 1996) p. 56.
- J. Preskill, Reliable quantum computers, Proc. R. Soc. Lond. A. 454, 385 (1998).
- H. G. Katzgraber, H. Bombín, and M. A. Martin-Delgado, Error threshold for color codes and random three-body Ising models, Physical Review Letters 103, 090501 (2009).
- P. Sarvepalli and R. Raussendorf, Efficient decoding of topological color codes, Phys. Rev. A 85, 022317 (2012).
- A. M. Stephens, Efficient fault-tolerant decoding of topological color codes (2014), arXiv:1402.3037 .
- N. Maskara, A. Kubica, and T. Jochym-O’Connor, Advantages of versatile neural-network decoding for topological codes, Physical Review A 99, 052351 (2019).
- N. Delfosse, Decoding color codes by projection onto surface codes, Physical Review A 89, 012317 (2014).
- N. Delfosse and N. H. Nickerson, Almost-linear time decoding algorithm for topological codes, Quantum 5, 595 (2021).
- N. Delfosse and G. Zémor, Linear-time maximum likelihood decoding of surface codes over the quantum erasure channel, Physical Review Research 2, 033042 (2020).
- A. Kubica and J. Preskill, Cellular-Automaton Decoders with Provable Thresholds for Topological Codes, Physical Review Letters 123, 020501 (2019).
- A. Kubica and N. Delfosse, Efficient color code decoders in d≥2𝑑2d\geq 2italic_d ≥ 2 dimensions from toric code decoders, Quantum 7, 929 (2023).
- C. Chamberland and P. Ronagh, Deep neural decoders for near term fault-tolerant experiments, Quantum Science and Technology 3, 044002 (2018).
- C. T. Chubb, General tensor network decoding of 2D Pauli codes (2021), arXiv:2101.04125 .
- P. Parrado-Rodríguez, M. Rispler, and M. Müller, Rescaling decoder for two-dimensional topological quantum color codes on 4.8.8 lattices, Phys. Rev. A 106, 032431 (2022).
- S. Kirkpatrick, C. D. Gelatt Jr, and M. P. Vecchi, Optimization by simulated annealing, Science 220, 671 (1983).
- Y. Takada, Y. Takeuchi, and K. Fujii, Ising model formulation for highly accurate topological color codes decoding, Physical Review Research 6, 013092 (2024).
- M. Ohzeki, Locations of multicritical points for spin glasses on regular lattices, Physical Review E 79, 021129 (2009a).
- M. Ohzeki, Accuracy thresholds of topological color codes on the hexagonal and square-octagonal lattices, Physical Review E 80, 011141 (2009b).
- K. Hukushima and Y. Iba, Population annealing and its application to a spin glass, in AIP Conference Proceedings, Vol. 690 (American Institute of Physics, 2003) pp. 200–206.
- J. Machta, Population annealing with weighted averages: A Monte Carlo method for rough free-energy landscapes, Physical Review E 82, 026704 (2010).
- S. Aaronson and D. Gottesman, Improved simulation of stabilizer circuits, Physical Review A 70, 052328 (2004).
- C. P. Robert, G. Casella, and G. Casella, Monte Carlo statistical methods, Vol. 2 (Springer, 1999).
- D. Gessert, W. Janke, and M. Weigel, Resampling schemes in population annealing: Numerical and theoretical results, Physical Review E 108, 065309 (2023).
- P. L. Ebert, D. Gessert, and M. Weigel, Weighted averages in population annealing: Analysis and general framework, Physical Review E 106, 045303 (2022).
- J. Houdayer, A cluster Monte Carlo algorithm for 2-dimensional spin glasses, The European Physical Journal B-Condensed Matter and Complex Systems 22, 479 (2001).
- Z. Zhu, A. J. Ochoa, and H. G. Katzgraber, Efficient cluster algorithm for spin glasses in any space dimension, Physical Review Letters 115, 077201 (2015).
- M. Weigel, Performance potential for simulating spin models on GPU, Journal of Computational Physics 231, 3064 (2012).