Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Space Separable Distillation for Lightweight Acoustic Scene Classification (2405.03567v1)

Published 6 May 2024 in cs.SD, cs.AI, and eess.AS

Abstract: Acoustic scene classification (ASC) is highly important in the real world. Recently, deep learning-based methods have been widely employed for acoustic scene classification. However, these methods are currently not lightweight enough as well as their performance is not satisfactory. To solve these problems, we propose a deep space separable distillation network. Firstly, the network performs high-low frequency decomposition on the log-mel spectrogram, significantly reducing computational complexity while maintaining model performance. Secondly, we specially design three lightweight operators for ASC, including Separable Convolution (SC), Orthonormal Separable Convolution (OSC), and Separable Partial Convolution (SPC). These operators exhibit highly efficient feature extraction capabilities in acoustic scene classification tasks. The experimental results demonstrate that the proposed method achieves a performance gain of 9.8% compared to the currently popular deep learning methods, while also having smaller parameter count and computational complexity.

Summary

We haven't generated a summary for this paper yet.