Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exploring knowledge graph-based neural-symbolic system from application perspective (2405.03524v4)

Published 6 May 2024 in cs.AI

Abstract: Advancements in AI and deep neural networks have driven significant progress in vision and text processing. However, achieving human-like reasoning and interpretability in AI systems remains a substantial challenge. The Neural-Symbolic paradigm, which integrates neural networks with symbolic systems, presents a promising pathway toward more interpretable AI. Within this paradigm, Knowledge Graphs (KG) are crucial, offering a structured and dynamic method for representing knowledge through interconnected entities and relationships, typically as triples (subject, predicate, object). This paper explores recent advancements in neural-symbolic integration based on KG, examining how it supports integration in three categories: enhancing the reasoning and interpretability of neural networks with symbolic knowledge (Symbol for Neural), refining the completeness and accuracy of symbolic systems via neural network methodologies (Neural for Symbol), and facilitating their combined application in Hybrid Neural-Symbolic Integration. It highlights current trends and proposes future research directions in Neural-Symbolic AI.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Shenzhe Zhu (8 papers)
  2. Shengxiang Sun (4 papers)
Citations (3)
X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets