Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Prediction of chaotic dynamics and extreme events: A recurrence-free quantum reservoir computing approach (2405.03390v2)

Published 6 May 2024 in quant-ph

Abstract: In chaotic dynamical systems, extreme events manifest in time series as unpredictable large-amplitude peaks. Although deterministic, extreme events appear seemingly randomly, which makes their forecasting difficult. By learning the dynamics from observables (data), reservoir computers can time-accurately predict extreme events and chaotic dynamics, but they may require many degrees of freedom (large reservoirs). In this paper, by exploiting quantum-computer ans\"atze and entanglement, we design reservoir computers with compact reservoirs and accurate prediction capabilities. First, we propose the recurrence-free quantum reservoir computer (RF-QRC) architecture. By developing ad-hoc quantum feature maps and removing recurrent connections, the RF-QRC has quantum circuits with small depths. This allows the RF-QRC to scale well with higher-dimensional chaotic systems, which makes it suitable for hardware implementation. Second, we forecast the temporal chaotic dynamics and their long-term statistics of low- and higher-dimensional dynamical systems. We find that RF-QRC requires smaller reservoirs than classical reservoir computers. Third, we apply the RF-QRC to the time prediction of extreme events in a model of a turbulent shear flow with turbulent bursts. We find that the RF-QRC has a longer predictability than the classical reservoir computer. The results and analyses indicate that quantum-computer ans\"atze offer nonlinear expressivity and computational scalability, which are useful for forecasting chaotic dynamics and extreme events. This work opens new opportunities for using quantum machine learning on near-term quantum computers.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (32)
  1. A. Ghadami and B. I. Epureanu, Philosophical Transactions of the Royal Society A 380, 20210213 (2022).
  2. F. Huhn and L. Magri, Journal of Fluid Mechanics 882, A24 (2020a).
  3. N. A. K. Doan, W. Polifke,  and L. Magri, “A physics-aware machine to predict extreme events in turbulence,”  (2019a), arXiv:1912.10994 [physics.flu-dyn] .
  4. A. Racca and L. Magri, “Statistical prediction of extreme events from small datasets,”  (2022a), arXiv:2201.08294 [nlin, physics:physics].
  5. G. Margazoglou and L. Magri, Nonlinear Dynamics 111, 8799 (2023).
  6. A. Racca and L. Magri, Neural Networks 142, 252 (2021).
  7. P. Werbos, Proceedings of the IEEE 78, 1550 (1990).
  8. H. Jaeger, Bonn, Germany: German National Research Center for Information Technology GMD Technical Report 148 (2001).
  9. N. A. K. Doan, W. Polifke,  and L. Magri, “A physics-aware machine to predict extreme events in turbulence,”  (2019c), arXiv:1912.10994 [nlin, physics:physics].
  10. A. Racca and L. Magri, Physical Review Fluids 7, 104402 (2022b).
  11. “Short- and long-term predictions of chaotic flows and extreme events: a physics-constrained reservoir computing approach | Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences,”  (a).
  12. R. P. Feynman, in Feynman and computation (CRC Press, 2018) pp. 133–153.
  13. P. Shor, in Proceedings 35th Annual Symposium on Foundations of Computer Science (1994) pp. 124–134.
  14. C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio,  and P. J. Coles, “Variational quantum linear solver,”  (2020), arXiv:1909.05820 [quant-ph] .
  15. K. Fujii and K. Nakajima, Physical Review Applied 8, 024030 (2017), publisher: American Physical Society.
  16. K. Fujii and K. Nakajima, “Quantum reservoir computing: A reservoir approach toward quantum machine learning on near-term quantum devices,” in Reservoir Computing: Theory, Physical Implementations, and Applications, edited by K. Nakajima and I. Fischer (Springer Singapore, Singapore, 2021) pp. 423–450.
  17. S. Y.-C. Chen, D. Fry, A. Deshmukh, V. Rastunkov,  and C. Stefanski, “Reservoir computing via quantum recurrent neural networks,”  (2022), arXiv:2211.02612 [cs.NE] .
  18. D. Fry, A. Deshmukh, S. Y.-C. Chen, V. Rastunkov,  and V. Markov, “Optimizing quantum noise-induced reservoir computing for nonlinear and chaotic time series prediction,”  (2023), arXiv:2303.05488 [quant-ph] .
  19. F. Wudarski, D. O‘Connor, S. Geaney, A. A. Asanjan, M. Wilson, E. Strbac, P. A. Lott,  and D. Venturelli, “Hybrid quantum-classical reservoir computing for simulating chaotic systems,”  (2023), arXiv:2311.14105 [quant-ph] .
  20. Q. H. Tran and K. Nakajima, “Higher-Order Quantum Reservoir Computing,”  (2020), arXiv:2006.08999 [nlin, physics:quant-ph].
  21. E. Lorenz, Predictability: a problem partly solved, Ph.D. thesis, Shinfield Park, Reading (1995).
  22. M. Lukoševičius, “A practical guide to applying echo state networks,” in Neural Networks: Tricks of the Trade: Second Edition, edited by G. Montavon, G. B. Orr,  and K.-R. Müller (Springer Berlin Heidelberg, Berlin, Heidelberg, 2012) pp. 659–686.
  23. J. Herteux and C. Räth, Chaos: An Interdisciplinary Journal of Nonlinear Science 30 (2020).
  24. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge University Press, 2011).
  25. P. Pfeffer, F. Heyder,  and J. Schumacher, “Reduced-order modeling of two-dimensional turbulent Rayleigh-B\’enard flow by hybrid quantum-classical reservoir computing,”  (2023), arXiv:2307.03053 [physics, physics:quant-ph].
  26. P. Mujal, R. Martínez-Peña, J. Nokkala, J. García-Beni, G. L. Giorgi, M. C. Soriano,  and R. Zambrini, “Opportunities in Quantum Reservoir Computing and Extreme Learning Machines,”  (2021), publication Title: arXiv e-prints ADS Bibcode: 2021arXiv210211831M.
  27. Qiskit contributors, “Qiskit: An open-source framework for quantum computing,”  (2023).
  28. C. Goutte and E. Gaussier, in Advances in Information Retrieval, edited by D. E. Losada and J. M. Fernández-Luna (Springer Berlin Heidelberg, Berlin, Heidelberg, 2005) pp. 345–359.
  29. S. Boyd and L. Chua, IEEE Transactions on Circuits and Systems 32, 1150 (1985), conference Name: IEEE Transactions on Circuits and Systems.
  30. T. L. Carroll, Chaos: An Interdisciplinary Journal of Nonlinear Science 32, 023123 (2022), arXiv:2201.01605 [cs].
  31. “Revisiting the memory capacity in reservoir computing of directed acyclic network | Chaos: An Interdisciplinary Journal of Nonlinear Science | AIP Publishing,”  (b).
  32. H. Jaeger,   (2002).
Citations (5)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com