Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Collaborative Satellite Computing through Adaptive DNN Task Splitting and Offloading (2405.03181v2)

Published 6 May 2024 in cs.DC

Abstract: Satellite computing has emerged as a promising technology for next-generation wireless networks. This innovative technology provides data processing capabilities, which facilitates the widespread implementation of AI-based applications, especially for image processing tasks involving deep neural network (DNN). With the limited computing resources of an individual satellite, independently handling DNN tasks generated by diverse user equipments (UEs) becomes a significant challenge. One viable solution is dividing a DNN task into multiple subtasks and subsequently distributing them across multiple satellites for collaborative computing. However, it is challenging to partition DNN appropriately and allocate subtasks into suitable satellites while ensuring load balancing. To this end, we propose a collaborative satellite computing system designed to improve task processing efficiency in satellite networks. Based on this system, a workload-balanced adaptive task splitting scheme is developed to equitably distribute the workload of DNN slices for collaborative inference, consequently enhancing the utilization of satellite computing resources. Additionally, a self-adaptive task offloading scheme based on a genetic algorithm (GA) is introduced to determine optimal offloading decisions within dynamic network environments. The numerical results illustrate that our proposal can outperform comparable methods in terms of task completion rate, delay, and resource utilization.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com